

The D. Van Nostrand Company intend this book to be sold to the Public at the advertised price, and supply it to the Trade on terms which will not allow of reduction.

A SHORT COURSE

IN

GRAPHIC STATICS

FOR STUDENTS OF
MECHANICAL ENGINEERING

BY

WILLIAM LEDYARD CATHCART

MEMBER AMERICAN SOCIETY OF NAVAL ENGINEERS, SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS, THE FRANKLIN INSTITUTE, AMERICAN SOCIETY OF MECHANICAL ENGINEERS

AND

J. IRVIN CHAFFEE, A.M.

PROFESSOR OF MATHEMATICS, WEBB'S ACADEMY OF NAVAL ARCHITECTURE AND MARINE ENGINEERING, MEMBER SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS

58 ILLUSTRA TIONS

NEW YORK
D. VAN NOSTRAND COMPANY

23 Murray and 27 Warren Streets
I9II

TGR70

COPYRIGHT，1911，BY
D．VAN NOSTRAND COMPANY

Normand 排ress
J．S．Cushing Co．－Berwick \＆Smith Co．
Norwood，Mass．，U．S．A．

PREFACE

The purpose of this book is to provide students of mechanical engineering with a brief course in Graphic Statics which will serve when the time to be devoted to this subject is short. Owing to the necessary limitations as to size, the treatment has been restricted mainly to the properties and general uses of the force and equilibrium polygons, these polygons being sufficient for the solution of most of the problems met in practice by mechanical engineers. While the design of trusses is, in general, the duty of the civil engineer, some attention has been given this subject, since such constructions as the Warren girder for an overhead crane, the walking beam of an engine, etc., fall under this classification. Examples, in full detail, have been included, so far as space would admit, since one good example is often of more service in instruction than many pages of theoretical investigation.

The discussion of principles, as given in this book, is largely a summary of similar portions of the authors' creatise, "The Elements of Graphic Statics," although there have been some minor additions. With the latter and the examples, the new material comprises nearly two-thirds of the text.

[^0]
CONTENTS

CHAPTER I

PAGE
Force and Equilibrium Polygons IArticle I. Force Triangle - 2. Force Polygon - 3 Equi-librium Polygon - 4. Conditions of Equilibrium.
Example 1. Bellcrank - 2. Pawl and Ratchet 3. Ratchet-rack - 4. Stationary Engine - 5. Pillar Crane -6. Sheer Legs.

CHAPTER II

Trusses: Stress Diagrams 23Article 5. Framed Structures -6. Stress Diagrams.Example 7. Roof Truss, Dead Load - 8. Roof Truss,Wind Load-9. Crane Truss.
CHAPTER III
Stationary Loads: Shears and Moments 4IArticle 7. Beams - 8. Vertical Shear - 9. Bending Mo-ment - Io. Resisting Moment - II. Shear and MomentDiagrams - 12. Moment Scale - 13. Twisting Moments-14. Bending and Twisting Moments combined: Equiva-lent Bending and Twisting Moments.
Example 10. I-Beam, Uniformly Distributed Load ir. Locomotive Side Rod with Uniform Load due to Centrifugal Force - 12. Girder Stay with Stresses produced by its supporting a Continuous Beam under Uniform Load - I3. Counter Shaft: Twisting and Bending Combined - 14. Centre Crank Shaft : Twisting and Bending Combined.

CHAPTER IV

> Live Loads: Shears and Moments
> Article 15. Variation of Live Load Shear at Sections to the Left of the Load - 16. Influence Diagrams : Influence Lines - I7. Variation of Live Load Shear at Any Given Section of a Beam - 18. Maximum Live Load Shear19. Counterbracing - 20. Variation of Bending Moment at Any Given Section of a Beam-21. Maximum Bending Moments due to Live Loads - 22. Live Load Stresses in Trusses and Plate Girders.
> Example I5. Plate Girder Bridge with Locomotive Wheel Loads: Maximum Moments and Shears - I6. Warren Girder for Overhead Crane: Maximum Stresses 17. Pratt Truss: Uniform Live Load.

CHAPTER V

Centre of Gravity: Moment of Inertia
110
Article 23. Centre of Gravity - 24. Centroid of Two Parallel Forces - 25. Centroid of Complanar Parallel Forces whose Points of Application are Complanar with All of the Forces, but are not in a Straight Line 26. Moment of Inertia: Radius of Gyration - 27. Moment of Inertia of a System of Complanar Parallel Forces - 28. Parallel Axes of Inertia, One passing through the Centroid - 29. Moment of Inertia of an Area.

Example 18. Centroid of Parallel Forces due to Locomotive Wheel Loads - I9. Centre of Gravity of Bulb Angle - 20. Centre of Gravity of a Partial Area - 21. Moment of Inertia of the Cross-section of a Deck Beam : Approximate Method-22. Accurate Determination of the Moment of Inertia of an Area about an Axis passing through its Centre of Gravity.

CHAPTER VI

PAGE
Friction I 34
Article 30. Friction - 31. Friction of Plane Surfaces:Friction Cone - 32. Friction of Screw Threads - 33. Pivotand Collar Friction - 34. Journal Friction : Friction Circle- 35. Link Connections: Friction Axis - 36. ChainFriction: Resistance of Ropes to Bending - 37. BeltGearing - 38. Friction of Gear Teeth.
Example 23. Friction of Stationary Engine - 24. Friction of Screw Jack - 25. Pulley Blocks: Relation of Load and Power - 26. Spur Gears: Relation of Load and Power.

GRAPHIC STATICS

CHAPTER I

FORCE AND EQUILIBRIUM POLYGONS

The Force Triangle, its extension, the Force Polygon, and the Equilibrium or Funicular Polygon form the foundations of all important applications in practice of the science of Graphic Statics. Consider first:

1. Force Triangle. In Fig. I, the weight $W=300$ pounds and the weights W_{1} and W_{2} are connected at O by cords, two of which pass over frictionless supports at b and c. The system is in equilibrium and W is at rest, being held from vertical or hori-

Fig. I zontal movement by the tensile stresses T_{1} and T_{2} in the supporting cords, which stresses are equal to their
corresponding weights W_{1} and W_{2} respectively. It is required to find the magnitudes of these weights.

On any scale - say, 200 pounds to the inch - lay off the line $d e=T=W=300$ pounds, parallel to the line of action $O a$ of the stress or force T. Draw $d f$ and ef, parallel respectively to $O b$ and $O c$. Then, measured by the same scale, $f d=T_{1}=W_{1}=224$ pounds and $e f=T_{2}=W_{2}=184$ pounds.

The triangle def is the force triangle for the forces T, T_{1}, and T_{2}. The direction of these forces is indicated by the arrowheads. It will be seen that, in passing around the force triangle, the three forces have the same direction, which is the case always when the system is in equilibrium. On the other hand, the resultant of T_{1} and T_{2} is a force $T^{\prime}=T$, applied at O, and this would be shown by the line $e d$, whose direction, as given by the upper arrowhead, is the reverse of those of T_{1} and T_{2}, in passing around the triangle. Similarly, a force directed from d to f would be the resultant of T and T_{2}, and one from f to e, the resultant of T and T_{1}. These principles are general, i.e., if, in any force triangle, the forces have the same direction in passing around the triangle, the system is in equilibrium; and, second, the force represented by any side of a force triangle is the resultant of the forces represented by the other two sides, if its direction, in passing around the triangle, is the reverse of theirs. The system, which consists of two forces and their resultant, is not then in equilibrium, since a resultant, unbalanced force exists.
2. Force Polygon. The principles governing the construction of the force polygon are an extension of those of the force triangle. Thus, Fig. 2, let there be four forces $T_{1} \cdots T_{4}$ acting at the angles shown, the magnitude of each being roo pounds, and all meeting at the point O to support the weight W, the magnitude of which is required.

On a scale of 100 pounds to the inch, lay off $a b, b c, c d$, and $d e$, parallel respectively to the lines of action of T_{1}, T_{2}, T_{3}, and T_{4}. Then, $a e=$ $T^{\prime}=270$ pounds is the resultant of the four forces, and is

Fig. 2
therefore equal in magnitude to W and opposite in direction to T, the stress produced by W. This follows since, if the polygon be divided into triangles by the dotted diagonals shown, $a c$ is the resultant of $a b$ and $b c, a d$ is the resultant of $a c$ and $c d$, and $a e=T^{\prime}$ is the resultant of $a d$ and $d e$ and therefore of the four forces. The principles established for the force triangle apply also to the force polygon. With either the triangle or the polygon, the sides representing forces may
be drawn in any order, the result being always the same, since the force polygon is essentially but the graphic addition of forces, i.e., the horizontal and vertical components of the resultant of a system of forces are, respectively, the algebraic sum of the horizontal and vertical components of the forces forming the system.

The forces considered in Figs. I and 2 are concurrent, i.e., their lines of action meet at a common point O. With non-concurrent forces, the lines of action may be either inclined to each other or parallel, but in neither case have they a common point of intersection. The force polygon gives only the magnitude of a force and the inclination of its line of action; it does not fix the location of that line within the body or area considered. For these reasons, such polygons can determine the equilibrium of concurrent forces only, the location of whose lines of action is governed by the fact that they must all intersect at one point. With non-concurrent forces, the same force polygon may be drawn for forces of the same magnitude and inclination, when these forces are, and are not, in equilibrium. Thus, Fig. i, if the force T_{2} be transferred to the new line of action $O^{\prime} c^{\prime}$, the system becomes non-concurrent, is no longer in equilibrium, and yet the force triangle edf remains the same.
3. Equilibrium Polygon. In order to determine the equilibrium of a system of non-concurrent forces, both the force and equilibrium (funicular) polygons must be drawn. Thus, let Fig. 3 represent non-concurrent forces
$P_{1} \ldots P_{5}$ applied to a rigid body, the magnitude, direction, and line of action of each force being known and the system being in equilibrium. The force polygon for these forces is $a \cdots e$, as shown below. Starting at any point on any line of action, draw the equilibrium polygon $A \cdots E$, of any shape, the only conditions being that its sides $S_{1} \cdots S_{5}$ shall be the same in number as the forces, and that each pair of sides shall intersect on the line of action between them. In the force polygon, draw the rays $S_{1} \cdots S_{5}$ parallel

FIG. 3 to their corresponding sides in the equilibrium polygon. It will be found that these rays all intersect at a common point O, called the pole.

Now, consider the equilibrium polygon as a jointed frame, composed of rigid bars pivotally connected at the joints $A \cdots E$, this frame being in equilibrium under the action of the external forces $P_{1} \cdots P_{5}$ and the stresses $S_{1} \cdots S_{5}$ in the sides. Since the frame is in equilibrium, each joint must also be in equilibrium. Therefore, for joint A, the triangle Oae is the force triangle for the
force P_{1} and the stresses S_{1} and S_{5}. The direction of P_{1} is given, and this determines the direction of S_{1} and S_{5}, with regard to joint A, as shown by the arrowheads in the force polygon, the three forces being in equilibrium and hence having the same direction in passing around the triangle. Transferring these directions to the equilibrium polygon, it will be seen that, since S_{1} and S_{5} both act azvay from joint A, they must both be tensile stresses.

The arrowheads just drawn on the rays relate only to the direction of the stresses with regard to joint A. Each joint must be treated separately in this respect. Thus, at joint B the direction of P_{2} is known and also that of S_{1}, since the latter has already been found to be tensile and therefore pulls away from joint B, reversing its direction in the force polygon as given for joint A. As the stress S_{2} must have the same direction in the triangle Oba, it follows that it is tensile. S_{3} and S_{4} are also found to be tensile stresses. If any stress had acted toward any joint, it would have been compressive. The character of a stress, as to tension or compression, is thus given by its direction in the force polygon, when that direction is transferred to the line of action of the stress at the joint in question; its magnitude is shown by its length in the force polygon, as measured by the force-scale of the latter.

As stated, Fig. 3 represents a system of forces in equilibrium. That the equilibrium polygon must close for equilibrium to exist, may be shown by transferring the force P_{5} to the new line of action $E^{\prime} E^{\prime \prime}$. The
system will then be no longer in equilibrium, the side $D E$ will end at E^{\prime}, the side $A E$ will be prolonged to $E^{\prime \prime}$, and the polygon will not close. In any force polygon, the rays all meet at the pole O, because each ray is common to two adjacent force triangles. It is evident, also, that an infinite number of equilibrium polygons can be drawn for the same system of external forces, since two consecutive rays simply show the magnitude and inclination of the two stresses which, at these angles of inclination, will hold the external force at the corresponding joint in equilibrium. If the inclination of the sides of the equilibrium polygon be changed, the magnitude of these stresses will be altered correspondingly. Hence, the pole may fall at any point within or without the force polygon ; or, reversing the operation, any point may first be selected as a pole, the rays drawn to the vertices of the force polygon, and then the equilibrium polygon constructed with its sides parallel to these rays. Finally, the equilibrium polygon may be substituted for any rigid body on which a system of forces - as $P_{1} \ldots P_{5}$ - acts, since a force may be considered as applied at any point in its line of action.

When the lines of action of the forces are parallel, the same principles apply, except that the force polygon now becomes a straight line. Thus, let Fig. 4 represent a simple beam of 24 feet span, supported at A and B, loaded with weights P_{1} and P_{3} of 300 and 200, pounds, respectively, and having a vertical, upward thrust, $P_{2}=100$ pounds. It is required to determine the magni-
tudes of the vertical reactions R_{1} and R_{2} at the left and right supports, respectively.

On the load-line ad lay off, to any convenient. scale, the downward force $P_{1}=300$ pounds $=a b$, the upward force $P_{2}=100$ pounds $=b c$, and the downward force

$$
P_{3}=200 \text { pounds }=c d .
$$

FIG. 4 Take any point O as the pole, and draw the rays $O a, O b, O c$, and $O d$. Starting at any point F on the line of action of P_{1}, draw the equilibrium polygon whose sides $F G$, $F H, H K$, and $K L$ are parallel, respectively, to the rays $O a, O b, O c$, and Od. Finally, draw the closing side $L G$, and the corresponding ray $O e$. Then, measured to the load-scale, $d e=R_{2}=191.7$ pounds, $e a=R_{1}=208.3$ pounds, and the closed force polygon is the straight line $a b c d e a$.

It will be seen that, in selecting a pole and drawing the rays and the corresponding equilibrium polygon, we have simply assumed two stresses at each joint of the latter polygon which will hold the external force at that joint in equilibrium, the lines of action of the stresses being determined by the inclination of the rays. Thus, at joint F, the assumed stresses have
the lines of action $F G$ and $F H$ and their magnitudes are equal to $O a$ and $O b$, respectively, when measured on the scale of the force polygon. Since the three forces $P_{1}, O a$, and $O b$ have the same direction in passing around the triangle $O a b$, the system at joint F is in equilibrium. The same principles apply to each of the other joints. The direction of the closing line $L G$ of the polygon determines that of the ray $O e$, and hence the magnitudes of the two reactions, since the latter are, in effect, vertical, upward forces, held in equilibrium by the stress in $L G$ or $O e$ acting with that in $F G$ or $O a$ for R_{1}, and with that in $K L$ or $O d$ for R_{2}.
4. Conditions of Equilibrium.-The forces considered in graphical processes are complanar, i.e., their lines of action all lie in the same plane. As to such forces, it will be seen from the foregoing that, for the equilibrium of:
(a) Concurrent forces, the force polygon must close; and, conversely, if the force polygon closes, the system is in equilibrium.
(b) Non-concurrent forces, both the force and equilibrium polygons must close ; conversely, if the force polygon and any equilibrium polygon close, the system is in equilibrium.

In the graphical analysis of the forces acting on a moving body, the latter is assumed to be in momentary equilibrium under the action of the driving forces, the reactions at journals or other supports, and the forces
due to resistances to motion. The forces or stresses thus determined apply only to the given position of the moving parts.

When it is desired to use graphical methods with forces whose lines of action lie in different planes, the components of these forces in one common plane for all should be found. These components can then be treated as a complanar system.

EXAMPLES

In the following examples of the application of the force polygon, the friction of journals and other bearings is not considered. When a body rests on another, as a crosshead on its bearing, there is a reacting pressure from the bearing, equal and opposite to the downward pressure upon it. While the parts are at rest, this reaction is perpendicular to the surfaces in contact; when they move, the reaction would still be normal to these surfaces, if there were no friction (Art. 30); by friction, its line of action is diverted from the normal by the amount of the angle of friction, as will be explained later. The total reaction, which is the resultant of the indefinite number of indefinitely small reactions at all points of the bearing, is assumed theoretically to act at the centre of the bearing surface ; in practice, this is only approximately true, since uneven wear makes the bearing pressure variable throughout.
I. Bell-crank. Taking the simplest example first, consider the bell-crank $A O B$, Fig. 5, journalled at O, driven by the link $C A$ with a force $P_{1}=100$ pounds,
and driving the link $B D$, whose resistance P_{2} is to be determined. The bell-crank is assumed to be at midstroke.

The crank is in momentary equilibrium under the action of the forces P_{1}, P_{2} and the reacting pressure R from the journal, which reaction is opposed to the resultant of the two forces. Since equilibrium exists and the forces are concurrent, the three lines of action must meet at a common point E, which is one point in the line of action of the reaction R. The other point necessary is determined by the fact that, as friction is disre-

Fig. 5 garded, the reaction is normal to the contact-surfaces of the bearing, and hence its line of action passes through the centre O. Therefore, in the force triangle $a b c$, draw $a b=P_{1}=100$ pounds and lay off $b c$ and $c a$ parallel, respectively, to $E O$ and $B D$. Then, on the same scale, $b c=R=180$ pounds and $c a=P_{2}=150$ pounds.
2. Pawl and Ratchet. Figure 6 represents a link $A B$, driving with a force $P_{1}=50$ pounds the crank $B O$ loose on the shaft O and carrying the pawl C, which engages the ratchet D keyed to the shaft. It is required to determine the resistance of, and the reaction upon, the pawl-crank.

The crank is in momentary equilibrium under the action of the driving force P_{1}, the backward thrust P_{2}, due to the resistance of the ratchet, and the reaction R from the shaft, which reaction is equal and opposite to the resultant of P_{1} and P_{2}.

Since equilibrium exists and the forces are concurrent, the lines of action of the latter meet

Fig. 6

Fig. 7
at the common point B To draw the force triangle, lay off $a b=P_{1}=50$ pounds, parallel to $A B$ and set off $b c$ and $c a$, parallel respectively to $E B$ and $B O$. Then, $b c=P_{2}=70$ pounds and $c a=R=50$ pounds.
3. Ratchet-rack. Figure 7 shows, in partial elevation, the double ratchet-rack, a mechanism sometimes used as a jack for raising light weights. The rack A has ratchet teeth on two opposite sides, which are alter-
nately engaged by the two oppositely inclined pawls, B and C, mounted on the lever D, which is pivoted at E on the framing (not shown). The rack is guided by two central ribs which reciprocate in guide-grooves formed in the frame. In Fig. 7, the driving lever is assumed to be at mid-stroke, with the pawl B lifting the rack and the weight W carried by the latter.

The thrust of the driving pawl is applied so near the centre line of the rack that its leverage and the consequent tendency to cant the rack are but slight. Hence, the reactions R_{1} and R_{2} of the bearings press toward the left and from the right sides of the grooves. These reactions are assumed to act from the respective centres, F and G, of the bearing surfaces; the reaction shown at each bearing is taken as that on both ribs.

The rack is in momentary equilibrium under the action of the weight W, the two reactions, and the thrust P of the driving pawl. There are thus four forces which are not concurrent, since the two reactions are parallel. The analysis of these forces can be made either by the use of the force and equilibrium polygons or by the method of resultants, as given below.

Equilibrium of this system of four forces can exist only when the resultant of any pair of them is equal to that of the other pair, and the two resultants are opposite in direction and have the same line of action. The lines of action of the weight W and the resultant R_{1} intersect at H, which is one point on the line of action of their resultant ; similarly, the lines of action of P and R_{2} meet at K, which is a point on the line of action of
their resultant. Since the two resultants must have the same line of action, it is obvious that this line is $H K$.

Take W as 300 pounds, and, in the force polygon, lay off $a b=W=300$; draw $b c$ parallel to $H K$ and $a c$ parallel to R_{1}. Similarly, from b and c lay off $b d$ and $c d$, parallel respectively to $K L$ and $G K$. Then, $a c=R_{1}=100$ pounds, $c d=R_{2}=40$ pounds, and $b d$ $=P=334$ pounds. While this method would be similar for any distance between the bearings, and between the rack and the pin of the driving pawl, the numerical results, as above, apply only to the spacing shown in the figure and to the given position of the parts.
4. Stationary Engine. Let Fig. 8 represent diagrammatically the ordinary stationary steam engine, the

Fig. 8
piston pressure P being applied at the crosshead pin A and transferred through the connecting $\operatorname{rod} A B$ to the crank $B C$ keyed to the shaft C, which rotates in an anticlockwise direction.

First, to determine the reaction at the crosshead bearing: disregarding friction, this reaction will be perpendicular to the contact-surfaces and therefore vertical. The crosshead pin is thus in equilibrium under the action of three forces: the piston pressure P, acting horizontally and from right to left ; the diagonal, downward resistance T of the connecting rod; and the vertical and upward reaction R_{1} of the crosshead bearing. Since equilibrium exists, the lines of action of these three forces intersect at a common point, and this point must be A, as P and T meet there. In the force polygon $a b c d$ lay off, to any convenient scale, $a b=P$; draw $a c$ and $b c$, parallel respectively to the lines of action of T and R_{1}. Then, on the same scale, $c a=T$ and $b c=R_{1}$.

Second, to find the reaction at the shaft bearing: to ascertain this, the character of the resistance must be assumed. Suppose that a spur gear $C D$ is keyed to the shaft, and that this gear meshes at D with a similar gear which it drives. There will be evidently then at D a resistance Q, acting from left to right and perpendicular to the radius $C D$. The conditions are thus similar to those of Example I, since, as the gears and crank are keyed to the shaft, the three members virtually form a bell-crank which is pressed to the left at B by the force T, now a driving force; is forced to the right by the resistance Q, acting at D; and is held from rising out of the bearing by the reaction R_{2} of the cap of the latter. The lines of action of Q and T meet at S. Hence, for equilibrium, that of R_{2} must be $S C$. In the force polygon, we have already found the magnitude of
the force T, which now acts from a to c. Therefore, from a lay off $a d$, and from c lay off $c d$, parallel respectively to the lines of action of R_{2} and Q. Then, $c d=Q$ and $d a=R_{2}$.
5. Pillar Crane. In the crane shown diagrammatically in Fig. 9, $A B$ is the tie, $A C$ the boom, and $B C$ the

FIG. 9 post or pillar. The weight W is suspended by a crane hook from the block D. One end of the hoisting rope is fastened to the tie-rod and the other passes around the sheaves in blocks D and A and thence to the hoist at E, the latter being secured to the boom. Let the blocks be single-sheaved with a velocity-ratio of 2 and a consequent tension $T=W / 2$ in the hoisting rope. Take W as 5 tons (Io,000 pounds) and neglect the weight of the crane. It is required to determine the stresses in the tie, boom, and post, and to show the general effect on the two former stresses of the tension T.

First, neglect T, i.e., assume W to be simply hung from, and supported by, the joint at A. This joint is then in equilibrium under the action of W and the loads P_{1} and P_{2} on the tie and boom, respectively. In the force polygon $a b c$, lay off $a b=W=5$ tons, and draw $a c$ and $b c$, parallel respectively to $A B$ and $A C$. Then, $c a=P_{1}=8.8$ tons is the tensile load on the tie, and $b c$ $=P_{2}=\mathrm{I} \mathrm{I} .4$ tons is the compressive load on the boom, due to the resultant along $c b$ of W and P_{1}.

Joint B is in equilibrium under the action of the tensile force P_{1} and the stresses which its horizontal and vertical components produce. The horizontal component, $P_{3}=a d=8.3$ tons, acts to bend the pillar, and this bending is resisted by stresses whose resultant S_{3} is equal and opposite to P_{3} and acts at B. The vertical component, $P_{4}=d c=2.9$ tons, tends to stretch either the post or vertical ties between B and C. This force is resisted by an equal and opposite tensile stress S_{4}.

At joint C there are acting the diagonal thrust P_{2} on the boom, the tensile stress S_{4}, an upward reaction $R=W$ on the collar- or pivot-bearing of the post, and a horizontal reaction R_{5} from the bearing at the base. The horizontal and vertical components of P_{2} are P_{5} and P_{6}, respectively. The force polygon is cbedc, in which $c b=P_{2}, b e=P_{5}=P_{3}, e d=R=W, d c=S_{4}$, and $c e=P_{6}=S_{4}+R=7.9$ tons.

Now, consider the tension T in the hoisting rope between the joint A and the hoist E. This tension has four direct and indirect effects: it acts as a tensile force, diagonal and to the left, on the joint A; as a result, its
component parallel to the tie takes a part of the original load on the latter, and its component parallel to the boom acts both as an additional compressive ioad between A and the point of attachment F of the hoist, and as a tensile load between F and the lower end of the boom at C.

To lay out the new force polygon for joint A, draw $a f=T=W / 2$ parallel to $E A$, and from f draw $f c^{\prime}$ parallel to $A B$ and meeting $b c$ prolonged at c^{\prime}. The polygon is then $a b c^{\prime} f a$ and $c^{\prime} f=7.5$ tons is the tensile load on the tie, while $b c^{\prime}=12.7$ tons is the compressive load on the boom between the points F and A. It will be seen that these changes in the two loads amount simply to adding the component $g f$ of T parallel to the boom to the compressive load on the latter, and to deducting the similar component $g a$ from the original tensile load on the tie. Now, from c lay off $c c^{\prime \prime}=f g$. Then, $c^{\prime \prime} b=10$. 1 tons is the new compressive load on the boom between F and C. These changes in the load on the tie and in the thrust on the lower end of the boom alter correspondingly the values of P_{3}, P_{4}, P_{5}, and P_{6}, with their resulting stresses and reactions, although R is still equal to W. The general effect of the tension T is then to increase the thrust on the upper section of the boom and to decrease the tension in the tie.

It will be observed that the values which have been found are, in general, loads and not stresses. The stress in the tie is pure tension; the boom acts as a column, compressed between C and A and loaded at C and F; the stresses in the post or pillar depend on
the method of connection of the tie and boom to each other and to the vertical member between them. In the ordinary pillar crane, vertical tie-rods, connecting the lower ends of the main tie and boom, take the vertical components of the stresses in these two members. The pillar is subjected to bending by the force P_{3}, and to compression from the direct vertical load W, and there is both a vertical reaction equal to W on the pintle at the upper end of the pillar and a bending stress due to P_{3}. Hence, to determine the unit-stress in the metal, the conditions under which each member of the crane works must be considered.

In the foregoing the weight of the crane has been disregarded, and this weight must be taken into account for an accurate determination of the stresses. The weight of any member of any structure acts at the centre of gravity of that member, and is assumed to be divided between the two points of support of the latter in inverse proportion to the lengths of the two segments between these points and the centre of gravity. Thus, if a member be io feet long and weigh iooo pounds, and if the centre of gravity be 7 feet from the left end, 300 pounds will be sustained by the support at that end and 700 pounds by the right support. Proceeding thus, we have a series of vertical forces, due to this weight or 'dead load,' acting at such joints as A, B, and C. For full accuracy, these vertical forces must be considered in drawing the force polygons. This method is general, and applies to all structures. If W_{1} be the total weight of the crane, the pressure
on the bearing at the base of the pillar will be $W+W_{1}$ $=R^{\prime}$, the corresponding vertical reaction there.

The weights of the members should first be estimated, in a tentative design, from the data of cranes previously built. If the members as designed exceed these weights, the forces, stresses, and dimensions must be recalculated until a reasonable approximation to accuracy is reached. As to pillar cranes in general, a reasonable estimate, as given

Fig. 10 by good practice, of the weight of all parts except the pillar and its immediate connections, is one-half of the maximum 'live load' to be carried by the crane hook ; the distance of the centre of gravity of these weights from the centre of the pillar is usually about one-fourth the radius or swing of the crane.
6. Sheer Legs. The analysis of the stresses in sheer legs differs from the preceding examples, since the forces and stresses are not all in the same plane.

The legs in Fig. Io are 130 feet long; the angle between them is 20 degrees; at the inclination shown, the plane passing through them makes an angle of 60 degrees with the horizontal, and one of 20 degrees with the tie or back leg. Taking the load as 100 tons, it is required to find the loads on the members. The weight of the structure will be neglected.

As stated, the lines of action of the loads and stresses lie in two planes: the vertical plane passing through the tie and the inclined plane in which the legs lie. As graphic methods are applied to forces in one plane only, we must find first the resultant, along the intersection of the two planes, of the forces in the inclined plane. The joint O is in equilibrium under the action of this resultant, the load W, and the stress T in the tie. In the force triangle (A) lay off $a b=W=100$ tons; draw $b c$ and $a c$ parallel, respectively, to the tie $O N$ and the legs $O M$. Then, $b c=T=143$ tons is the load on the tie or back leg, and $c a=P=220$ tons is the resultant, along the intersection of the two planes, of the compressive forces on the sheer legs.

To find the load or stress P_{1} on each leg, the resultant P must be resolved along the lines of the legs. Therefore, in (B), lay off $a c=P$, and from a and c draw $a d$ and $c d$, each making an angle of $20^{\circ} / 2=10$ degrees with $a c$. Then $c d=d a=P_{1}=112$ tons. The horizontal component of $d a$ or $P / 2$ is $e d=Q=22.5$ tons, which is the outward force acting on each leg at M to spread the pair apart.

At the joint N the diagonal tensile force T is resisted
by the vertical downward pull R of the foundation bolts, and the horizontal tensile stress T_{1} of the screw or other mechanism used for raising or lowering the legs. Hence, joint N is in equilibrium under the action of the forces T, R, and T_{1}. In (C) lay off $c b=T$; draw $b f$ vertically from b; and, horizontally from c, draw $f c$. Then $b f=R=91.5$ tons, and $f c=T_{1}=110.5$ tons.

In these diagrams the hoisting rope is assumed to act along the tie; if its line of action be inclined to the latter, the principles of Example 5 must be applied. With screw mechanism, the point N moves to and fro horizontally in raising or lowering the sheer legs; if a tackle be substituted for the tie or back leg, the point N should be fixed. Each of the sheer legs is compressed like a column by the force P_{1} and its weight; the latter, acting at the centre of gravity of the leg, also produces bending stresses. The tie is in tension, but its weight acts similarly to produce bending. Owing to the lengths of these members, their weights are relatively large, and hence the effects of these combined stresses must be considered carefully in designing the parts.

CHAPTER II

TRUSSES: STRESS DIAGRAMS

5. Framed Structures. The term 'framed structures' is used to designate such constructions as roof and bridge trusses, the lattice girders for overhead cranes, the walking beam of an engine, etc. In all such structures, the loads, however applied, are distributed among the members, which are thus simultaneously under strain. The fundamental requirement in truss design is that the members shall be so combined as to form a series of triangles whose sides shall be capable of withstanding compressive stress, if necessary. This requirement is due to the fact that a triangle - assuming rigid sides and hinged vertices - is the only polygon which will not change its shape when loads are applied at one or more vertices. The members forming a truss may be designed for tension only as in a tie, for compression only as in a strut, or for both stresses as in the tie-strut.
(a) Assumptions. In the graphic analysis of trusses, two basic assumptions are made : first, the loads, of whatever character, are considered as transferred to, and applied at the joints of the truss only, which would produce, only direct tension or compression in the members
which meet at a joint ; and, second, these loads are held in equilibrium at each joint by the internal stresses acting in the members united there.

In practice, the first of these conditions is met by so designing the structure as to transfer the loads to the joints; the purlins and jack rafters of a roof truss and the floor system, or transverse and longitudinal beams and sleepers, of a bridge truss serve this end. It is true that bending stresses, due to the weight of the members, and, in some cases, to the uniform load carried by them, do exist in the members, and when the latter are relatively large, these stresses should be considered in addition to the direct stresses for which the parts are designed. The second of the assumptions, as above, must be true for the stability of the structure.
(b) Loads. All trusses carry as a dead load, the weight of the structure, which is assumed, in general, to be divided proportionately and concentrated at the joints. In roof trusses whose roof-surface is inclined at less than 60 degrees, there is in winter an additional uniform load in the weight of the snow on the roof, and in all such trusses there is also an intermittent load, in the wind pressure on one side or the other of the roof. Bridge trusses have similar wind-loads, but their chief burden is the live or moving load which crosses the bridge. These statements, as to dead and live loads, apply also to the trusses for overhead cranes.
6. Stress Diagrams. Since it is assumed that all loads are concentrated at the joints, that the members
are subjected to direct axial stress only, and that each joint is in equilibrium under the action of the loads applied there and the stresses whose lines of action meet at that point, it is evident that the joints of a truss, such as is shown in the upper diagram, Fig. II, are similar in principle to the joints of an equilibrium polygon. It should be understood that the truss (force or space) diagram is not such a polygon and that this similarity relates only to the joints and the elementary triangles of the truss.

Owing to this similarity, there can be drawn, for each joint, a force polygon, since the directions of all lines of action and the magnitudes of the external loads are known. Further, since each member connects two joints, one side of each force polygon is common to it and to the polygon immediately following. Hence, the series of force polygons, for a complete truss or other similar structure, is consecutive and forms the stress diagram.

The character of the stress in a member - either tensile $(+)$ or compressive $(-)$ - is indicated by the direction of the stress with regard to the joint, being tensile if it act away from the joint and compressive if it press toward the latter. This direction, to or from the joint, is given, as shown previously, by that of the stress in passing around the force polygon. In constructing this polygon, the loads and stresses about a joint are taken usually in clockwise order, and, starting at any joint, the remainder may be taken consecutively, or, as is sometimes necessary, alternately from the two sides of the truss.

The stresses in the members of a truss may also be determined by Rankine's " Method of Sections." This is an analytical process, the application of which is shown in Art. 22.

EXAMPLES

7. Roof Truss, Dead Load. Figure il gives the skeleton diagram of a steel roof truss, having a lower chord $A A^{\prime}$, an

Fig. II upper chord composed of rafters inclined at about 30 degrees to the horizontal, and connecting diagonal members or braces. The span $A A^{\prime}$ is 36 feet, the rise from chord to peak is io feet, each rafter is 20 feet 9 inches long, and the trusses are spaced 20 feet apart. The joints of the rafters divide the section of roof carried by each truss into panels of equal width, $1-2,2-3$, etc. ; the length of the panels is 12 feet,
i.e. the distance between the centre-lines of the adjacent spaces between the trusses. The total weight of the truss and roof covering is borne by the rafters, and each joint (apex or panel-point) of the latter is assumed to support one-half of the load on each of the adjacent panels and a corresponding share of the weight of the truss. In Fig. I I, there are thus three joints having a full panelload, and one at each of the two supports, A and A^{\prime}, having one-half of that load. The total dead load is sustained at the supports by the two vertical reactions, R_{1} and R_{2}. With dead and snow loads, these reactions are equal for a symmetrical truss.

The dead load consists of the weight of the truss and that of the roof covering. In designing, the weight of the truss may be estimated from those of trusses previously built, or an empirical formula may be used. Trautwine gives, for preliminary estimates of the weights of steel trusses in pounds per square foot of building space covered, 0.05 to $0.09 \times$ span in feet. The roof covering includes the jack rafters, purlins, sheathing, and the outer layer of felt and gravel, or slate, corrugated iron, etc. The weights, per square foot of roof surface, of these materials are given in works on this subject. The snow-load varies from 10 to 30 pounds per square foot of horizontal projection of the roof; it is about 20 pounds in the latitude of New York City ; roofs inclined at 60 degrees or more have no snow-loads. The load due to wind pressure will be considered in Example 8.

Figure II shows one of the methods of notation used
for trusses. Within each triangle and between each pair of loads or forces, capital letters are placed, and the member or load is designated by the letters between which it lies. Thus, $B D$ is the lower section of the left rafter, $D E$ the adjacent diagonal, etc. The stresses in these members are indicated in the force polygon by the same letters, although not in capitals. Thus, the length of the side $b d$ gives the stress in the member $B D$, etc. The order in which the forces about a joint are taken in constructing the force polygon is frequently shown by a circle with arrowheads, as in the figure. At the left support A, and similarly at the right support, there are two opposing forces acting vertically: the half panel-load $W / 2$ and the total reaction R_{1} of the support, which reaction is equal to one-half the total load or 2 W . The difference, I. 5 W , between these two forces is the effective reaction.

Taking 13.5 pounds as the weight, per square foot of roof surface, of the roof covering and using the formula previously given for the truss weight, we have, for the truss shown in Fig. II :

$$
\begin{aligned}
\text { Area of roof surface }=12 \times 20.75 \times 2 & =498 \text { square feet. } \\
\text { Weight of roof covering }=498 \times 13.5 & =6723 \text { pounds } \\
\text { Weight of truss }=0.07 \times 36(12 \times 36) & =\underline{1244} \text { pounds } \\
& =7967 \text { pounds } \\
\text { Dead load } & =1992 \text { pounds } \\
\text { Total reaction }=R_{1}=R_{2}=7967 / 2 & =3984 \text { pounds } \\
\text { Panel-load }=W=7967 / 4 & =
\end{aligned}
$$

On the load-line $a a^{\prime}$, lay off, to any convenient scale of pounds to the inch, the loads in consecutive order; thus, $a b=$ load $A B=W / 2, b c=$ load $B C=W$, etc. Joint I at the left support is in equilibrium under the
action of the load $A B$, the stresses in $B D$ and $D G$, and the reaction $G A$ or R_{1}. In the force polygon, $a b$ is the load $A B$ and $g a$ is R_{1}; from b and g, lay off $b d$ and $g d$, parallel, respectively, to $B D$ and $D G$. The closed polygon for the joint is then abdga, and, in passing around it, $b d$ acts toward the joint and is compressive, while $d g$ acts from the joint and is tensile.

At joint 2, the system in equilibrium is composed of the stress $D B$ and the load $B C$ which are known, and the stresses in $C E$ and $E D$ which are to be determined. From c and d, draw $c e$ and $e d$ parallel, respectively, to $C E$ and $E D$ and meeting at e. The closed polygon is then $b c e d b$, and the character and magnitude of the stresses can be found as before. The similar polygon, similarly constructed, for joint 3 is $c c^{\prime} e^{\prime} f e c$. Since both the truss and the system of loads are symmetrical, the stresses in corresponding members on the two sides are the same, and hence the stress diagram need not be considered further.

Tabulating the results, as measured to scale from the stress diagram, we have:

The snow load is virtually an additional and temporary layer of roof covering. Hence, its weight produces the same kind of stress in each member as the dead load, the amount thus added to each dead load stress being proportional to the ratio of the snow and dead loads. Taking the weight of the snow as 15 pounds per square foot of projected area of the section of roof carried by the truss, the total snow-load is $36 \times 12 \times 15=6480$ pounds. The ratio, as above, is then $6480 / 7967=0.8 \mathrm{I} 3$, and hence the total stress in any member, due to the two loads, is r.8i3 times that tabulated above.
8. Roof Truss, Wind Loads. The stresses produced in a roof truss by wind pressure are, in some cases, opposite in kind to those due to dead and snow loads. Therefore, a separate stress diagram is drawn for wind loads, and the results measured from it are added algebraically to the dead and snow load stresses, in order to obtain the final stress in each member. The latter is designed not only for the maximum stress of either kind, but also for withstanding stresses of both kinds, if the wind causes a reversal of stress.

The action of wind pressure on an inclined roof is not understood fully, and several empirical methods of estimating wind loads are used. Hutton's formula is :

$$
p_{n}=p_{h} \sin \theta^{1.84 \cos \theta-1}
$$

in which θ is the inclination of the roof surface to the horizontal, p_{n} is the perpendicular pressure per square foot on that surface and due to the wind, and p_{h} is the
similar pressure on a vertical plane by a horizontal wind.*

The usual practice is to assume p_{h} as 30 to 40 pounds. At 40 pounds and with $\theta=30$ degrees, $p_{n}=265$ pounds; and, remembering that only the windward side of the roof is subjected to wind pressure, we have, for the truss shown in Figs. II and 12:

Total load on windward side $=20.75 \times 12 \times 26.5=6598.5$ pounds Panel-load on windward side $=W_{1}=6598.5 / 2=3299$ pounds

Again, metal trusses differ in their methods of support. If short, both ends may be fixed; if long and large, one end is fixed and the other is free to allow for expansion and contraction, the free end being supported on a roller or sliding bearing. If the truss is fixed at both ends, but one stress diagram for wind pressure need be made, with the wind on one side only, since, if the wind shift to the other side, the stresses in the two halves of the truss will simply be interchanged. When one end of the truss is free, however, the case is different, as, disregarding the friction of the bearing, the reaction at the free end is always vertical, while that at the fixed end varies in direction and magnitude as the wind shifts.

Let it be required to find the stresses due to wind

* A simpler expression of at least equal practical value is the Straight Line Formula :

$$
P_{n}=A P / 45
$$

in which A, P_{n}, and P correspond with θ, p_{n}, and p_{n} in Hutton's formula. The student will find additional expressions for the normal component of the wind pressure in works treating this branch of the subject in greater detail.
loads on the truss whose dead load stresses were de-

Fig. 12
termined in Example 7. In Fig. 12, assuming the right end of the truss to be free and the wind to be on the
left, there will be a normal load, $W_{1}=3299$ pounds, at joint 2 , and a similar load of $W_{1} / 2$ at each of the joints I and 3. As the dead and snow loads are not considered, there are no loads at joints 1^{\prime} and 2^{\prime}. The resultant of the wind loads must have the same line of action as the middle load, since this load is the greatest of the three and the two others are equal and equally spaced. This resultant and the reactions at the two supports form a system of external forces in equilibrium, and hence the resultant of the two reactions must be equal and opposite to that of the loads, and have the same line of action.

As the right-hand end of the truss is free, R_{2} will act vertically. The lines of action of R_{2} and the load-resultant are thus known, as is the magnitude, $2 W_{1}$, of the latter. Prolong the line of action $2 O$ of the resultant wind load until it meets at O that of R_{2}; then, since the forces are concurrent, O_{I} is the line of action of R_{1}. On $2 O$, lay off the loads, $b c=W_{1}$ and $a b=c c^{\prime}=W_{1} / 2$. From a and c^{\prime}, draw $a g$ and $c^{\prime} g$ parallel, respectively, to O I and $O_{\mathrm{I}}{ }^{\prime}$. The force polygon for the loads and reactions is then $a c^{\prime} g a$ and $a c^{\prime}=$ loads, $c^{\prime} g=R_{2}$, and $g a=R_{1}$.

Joint I is in equilibrium under the action of R_{1}, the load $W_{1} / 2$, and the stresses in the members $B D$ and $D G$. In the force polygon, $a b$ is the load; draw $b d$ and $g d$ parallel to $B D$ and $G D$, respectively. The force polygon is then $a b d g a$, and $b d$ is a compressive, and $d g$ a tensile, stress.

At joint I^{\prime}, the system in equilibrium is the reaction R_{2} and the stresses in $B^{\prime} D^{\prime}$ and $D^{\prime} G$. As there are no
loads at joints I^{\prime} and 2^{\prime}, the vertex c^{\prime} in the force polygon is also the location of the points b^{\prime} and a^{\prime}. Draw $b^{\prime} d^{\prime}$ and $g d^{\prime}$ parallel to the two members. The force polygon is then $a^{\prime} g d^{\prime} b^{\prime} a^{\prime}$, and $g d^{\prime}$ is tensile and $d^{\prime} b^{\prime}$ compressive.

Proceeding similarly for joint 2 , the force polygon is $b c e d b$. In the polygon for joint $2^{\prime}, b^{\prime} d^{\prime}$ is known and b^{\prime} and c^{\prime} lie at the same point. Hence, $e^{\prime} c^{\prime}$ must coincide with $b^{\prime} d^{\prime}$, and the force polygon is $b^{\prime} d^{\prime} e^{\prime} c^{\prime} b^{\prime}$, which is a straight line. There is no stress in the diagonal $D^{\prime} E^{\prime}$.

In the polygon at joint 3 , there are known the three consecutive sides, $e c, c c^{\prime}$, and $c^{\prime} e^{\prime}$; the remaining sides, $e^{\prime} f$ and $f e$, must meet at the point f. Hence, f coincides with e^{\prime}, and there is no stress in the member $E^{\prime} F$. The polygon is $c c^{\prime} e^{\prime} f e c$.

Now, let the wind shift to the right. The loads (not shown) due to it will be removed to joints I^{\prime} and 2^{\prime}, and that at joint 3 will be parallel to them and normal to the right rafter. Their resultant will pass through 2^{\prime} and meet the new right reaction R^{\prime} - which is vertical as before - at the point M^{\prime}. Hence, M^{\prime} I is the line of action of the new left reaction R_{1}^{\prime}, which line practically coincides with the rafter, as the inclination of the latter is about 30 degrees. Prolonging the line $M^{\prime} 2^{\prime}$ for the load-line $a^{\prime} c$ and proceeding as before, the force polygon $a^{\prime} \operatorname{cg} a^{\prime}$ for the loads and reactions is drawn. The stress diagram is laid out by the previous method, except that the stresses are taken in non-clockwise order.

Tabulating the results, as measured from the diagrams in Figs. II and 12, we have:

FINAL STRESSES

Member	$\begin{aligned} & \text { Déad } \\ & \text { LoAd } \end{aligned}$	Snow Load	Wind on		Stress	
			Fixed Side	Free Side	Maximum	Minimum
$B D$	-6080	-4943	-4600	- 3760	-7.86	-3.04
$B^{\prime} D^{\prime}$	- 6080	- 4943	- 3800	- 4440	-7.73	-3.04
$C E$	- 5080	-4130	-4600	- 3760	-6.9	-2.54
$C^{\prime} E^{\prime}$	- 5080	-4130	- 3800	- 4440	-6.82	-2.54
DE	- 1760	-143I	- 3299	\bigcirc	- 3.24	-0.88
$D^{\prime} E^{\prime}$	- 1760	-1431	\bigcirc	- 3299	-3.24	-0.88
EF	+1760	+1431	$+3200$		+3.19	+ 0.88
$E^{\prime} F$	+1760	+1431	\bigcirc	$+3120$	$+3.16$	+ 0.88
$D G$	+ 5280	+ 4293	+ 6640	-	+8.I	+ 2.64
$D^{\prime} G$	+ 5280	+ 4293	+ 3260	$+2920$	+6.41	+2.64
$F G$	+ 3640	+ 2959	+ 3260	\bigcirc	+ 4.93	+1.82

The maximum and minimum stresses are given in tons (2000 pounds), the remainder in pounds. The maximum stress is, in each case, the algebraic sum of the dead and snow loads and the greater of the two wind loads; the minimum is the dead load stress. As before, tensile stresses are marked + and compressive stresses -.
9. Crane Truss. Trusses are used frequently in crane construction. Thus, the crane shown in Fig. 13 is virtualiy a braced cantilever, the vertical and diagonal members serving to stiffen the structure and to distribute the dead load, which is the weight of the crane. The live load W_{1}, suspended from the peak A^{\prime}, is, from the peak to the diagonal $P Q$, assumed to be taken solely by the upper and lower chords or sides of the boom, the

Fig. I_{3}
section between joints I and Io acting as a tie and that from I to 9 as a strut. This assumption is sufficiently correct for general purposes, but, for an absolutely accurate determination of the stresses in the members, the effect of bending should be considered also.

Let the total weight of the crane or dead load be 1800 pounds and the maximum live load or weight to be carried at the peak be $W_{1}=5$ tons (10,000 pounds). Assume the dead load to be distributed among the upper joints, as in a roof truss, the panel-load W being thus 300 pounds. While this distribution is not strictly that which actually exists, it is generally used, for cranes of moderate size, as a ready and reasonable approximation.

A single stress diagram could be drawn for both the dead and live loads, if the load at joint I were taken as the total load there, or $W_{1}+W / 2$; but W_{1} is so much greater than W that the scale necessary for accurate measurement of the stresses in the members would make the diagram inconveniently large. Hence, separate diagrams, at different scales, will be drawn for the dead and live loads. The total stress in a member will then be the algebraic sum of those given by the two diagrams.

In the dead load diagram, lay off the loads from a^{\prime} to v, taking them in anti-clockwise order. As W_{1} is disregarded, the point a^{\prime} corresponds also with the point t. Joint I is in equilibrium under the action of the load $A^{\prime} A$ and the stresses in the members $A G$ and $G T=G A^{\prime}$. Drawing the stress lines parallel
to their corresponding members, we have the force triangle $a g a^{\prime}$, in which $a g$ is a tensile, and $g a^{\prime}=g t$ is a compressive stress.

At joint 2, the known forces are $G A$ and $A B=W$; their resultant is $g b$. From g and b, lay off $g h$ and $b h$ parallel, respectively, to $H G$ and $B H$ and meeting at h. The force polygon is then gablg. The brace $H G$ thus acts as a strut, which is the case with the similar braces parallel to it.

The known stresses at joint 3 are $a^{\prime} g$ and $g h$; their resultant is $a^{\prime} h$. From a^{\prime} and h, lay off $a^{\prime} k$ and $h k$ meeting at k. The force polygon is then $a^{\prime} g h k a^{\prime}$, and $H K$ is a tie, as are $L M$ and $N O$. The polygons for joints 4 to 8 are drawn similarly.

At joint 9 , the known stresses are $a^{\prime} c$ and $o p$; their resultant is $a^{\prime} p$. Lay off $a^{\prime} q$ and $p q$ parallel to their corresponding members. The force polygon is $a^{\prime} o p q a^{\prime}$, and $P Q$ is a strut.

The force polygon for joint 10 is $q p e f s q$, and $S Q$ is a strut. At joint in, the polygon is $a^{\prime} q s u a^{\prime} ; S U$ is a strut, and $u a^{\prime}=R_{2}$, the right and upward reaction from the foundation. The similar polygon for joint 12 is $u s f v u$, and $v u=R_{1}$ is the downward pull of the foundation bolts.

Now, disregard the weight of the crane and consider only the effects of the live load W_{1} at the peak. The general method and the order in which the stresses are taken are the same as before. In the live load diagram lay off W_{1} from t to a^{\prime}. Joint I is in equilibrium under the action of W_{1} and the stresses in the
members $A G$ and $G T$. As there are no dead loads at the intervening joints, each of these stresses is uniform in intensity throughout the members from joint I to joints io and 9 , respectively, and therefore the point a^{\prime} coincides with the points a, b, c, d, e, and f, and similarly the point g corresponds with the points k, m, o, and p. From t and a, lay off $t g$ and $a g$, parallel to $G T$ and $A G$, respectively, and meeting at g. The force polygon is then tagt; $a g$ is the tensile stress in the upper members between joints I and 10 ; $g t$ is the stress in the members forming a strut between joints I and 9 ; and there is no stress, except that due to bending, in the diagonal braces from joint I to, and including, the member $O P$.

At joint 9, the stresses acting are those in the members $T O, P Q$, and $Q T$, that in $O P$ being zero. The force polygon is topqt, and $P Q$ is a strut. The similar polygon for joint io is $q p e f s q$, in which the stress $p e=g a$ and ef is zero. $F S$ and $S Q$ are under tension. For joint in the polygon is tqsut; $S U$ acts as a strut and $u t$ gives the magnitude of R_{2}, the right reaction and upward pressure from the foundations. Finally, the polygon for joint 12 is usfvu, in which the point v coincides with f, and $v u=R_{1}$ is the downward pull of the foundation bolts.

Tabulating the stresses, as measured from the two diagrams, and taking the algebraic sum to obtain the total stress in each member, we have:

Member	$\begin{gathered} \text { Stress (Lb.) } \\ \text { due to } \end{gathered}$		Total Stress	Member	$\begin{gathered} \text { Stress (Lb) } \\ \text { DUE to } \end{gathered}$		Total Stress
	Dead Load	Live Load			Dead Load	Live Load	
$A G$	+ 940	+65,000	+65,940	GH	-280	o	- 280
BH	+ 820	+65,000	+ 65,820	$K L$	-400	o	- 400
CL	+ 1780	+65,000	+66,780	$M N$	- 530	o	- 530
DN	+ 2640	+65,000	+67,640	$O P$	-660	\bigcirc	- 660
$E P$	+ 3540	+65,000	+ 68,540	$Q S$	-480	$+3500$	$+3020$
$F S$	$+2170$	+ 34,000	$+36,170$	HK	+ 940	o	+ 940
GT	- 1000	-69,500	-70,500	LM	+ IOIO	o	+ 1010
$K T$	- 2080	-69,500	-71,580	NO	+ 1100	\bigcirc	+ 1100
$M T$	- 3060	-69,500	-72,560	$P Q$	- I640	-37,000	$-38,640$
OT	- 4080	-69,500	$-73,580$	$S U$	-1480	$-23,500$	- 24,980
$Q T$	-3240	-44,500	-47,740				

Similarly, the reactions are :

	Dead Load	Live Load	Total, Pounds
R_{1}	1450	24,000	25,450
R_{2}	3250	34,000	37,250

CHAPTER III

STATIONARY LOADS: SHEARS AND MOMENTS

7. Beams. In the analysis of their stresses, many machine and structural members are classed as 'beams,' since the effects of their applied loads are the same in character as those produced by the loads on a beam. Technically, a beam is a rigid bar, generally horizontal, and sustained by one or more supports. A simple beam rests freely on two supports, one at each end; a continuous beam has three or more supports; a cantilever beam has but one support, which is at one end, this definition including the part of any other form of beam which projects beyond the support which upholds it.

Supports may be either free or restrained. With the former, the beam simply lies on its supports; when the beam is restrained, its end or ends are built in or otherwise so fixed that the tangent to the elastic curve at the supports is horizontal. The elastic curve is the curve into which the neutral axis or neutral surface of the beam is bent by the loads. This bending produces compression on one side of the beam and tension on the other; the neutral axis lies in the plane of zero stress between the compressed and stretched parts and passes through the centre of gravity of the cross-section of the beam.
8. Vertical Shear. The principal effects of the loads on a beam are to produce vertical shear and bending moments. Thus, Fig. i4 (A) represents a simple beam

Fig. 14 without loads. When under load, it is subjected simultaneously to shearing, as in (B), and to bending, as in (C).

At any section, as $a b$, it will be seen that, in shearing, the seg-
ment of the beam to the left of $a b$ is forced vertically upward and that to the right vertically downward by two equal and opposite forces acting at the section, each known as the vertical shear V. The shear to the left is that usually considered; it is equal to the resultant or algebraic sum of the forces to the left of any section as $a b$, upward forces and shears being considered as positive, and those acting downward negative.

Thus:

$$
V=R_{1}-\Sigma P,
$$

in which R_{1} is the left reaction and ΣP is the algebraic sum of the upward and downward forces between the section and the left support. In (B), if the weight of the segment of the beam to the left is neglected, $\Sigma P=P_{1}$; if this weight is considered, $\Sigma P=P_{1}+w x$, in which w is the weight of the beam per unit of length and x is the distance of the section $a b$ from the left support.
9. Bending Moment. Similarly, at any section, as $a b$ in (C), Fig. 14, the forces to the left of the section combine to rotate the left segment in a clockwise direction, while those to the right act, with an equal resultant bending moment, to produce rotation in the reverse direction. The results are to compress the upper side of the beam, stretch the lower side, and, if the load be excessive, to rupture the fibres at the bottom, and ultimately the beam. These actions are the effects of the moments, about any point in the section $a b$, of the forces acting to the left or right of that section, the resultant bending moment of the forces to the right being equal to that of those on the left.

Since the bending moment is the product of a force by its distance from the section, it is a compound quantity, expressed in pounds-inches or tons-feet. Neglecting the weight of the beam, the bending moment at the section $a b$ is the algebraic sum of the moments of the forces to the left of that section, or:

$$
M=R_{1} \times x-P_{1} \times x_{1} .
$$

The weight of the segment to the left will act at the centre of gravity of that segment. Considering this weight, the bending moment becomes:

$$
M=R_{1} \times x-P_{1} \times x_{1}-w x \times x / 2
$$

10. Resisting Moment. The resisting moment at any section of a beam is the algebraic sum of the moments of the internal horizontal stresses about any point in the section considered, these stresses being produced by the
bending moment. For equilibrium, the bending moment and resisting moment must be equal. Hence, as is shown in works on Strength of Materials :

Resisting Moment $=S I / c=$ Bending Moment $=M$, in which S is the unit-stress on the fibre most remote from the neutral axis of the cross-section of the beam at the section considered, c is the distance of that fibre from the neutral axis, and I is the rectangular moment of inertia of the cross-section.
11. Shear and Moment Diagrams. The vertical shear and bending moment at any section of a beam can be found from the force and equilibrium polygons. Thus,

FIG. 15
let $A B$, Fig. ${ }^{\prime} 5$, represent a simple beam, having three vertical loads of 100,400 , and 250 pounds, spaced as shown. Lay off these loads on the load-line $a d$, draw
the rays $O a, O b, O c$, and $O d$, and construct the corresponding equilibrium polygon $C D E F G C$, the closing side $G C$ of which determines the magnitude $e a$ of the left reaction R_{1} and the similar magnitude de of R_{2}.

The vertical shear to the left of any section of a beam is, by definition, equal to the left reaction, minus the sum of the loads to the left of that section. Hence, between the left support and the load $P_{1}, V=R_{1}=e a$; between P_{1} and $P_{2}, V=R_{1}-P_{1}=c a-a b=c b$; between P_{2} and $P_{3}, V=R_{1}-\left(P_{1}+P_{2}\right)=c a-a c=-c c$; and, between P_{3} and the right support, $V=R_{1}-\left(P_{1}+P_{2}+P_{3}\right)$ $=e a-a d=-e d=-R_{2}$. Projecting these values from the load-line on the lines of action of the forces, we have the vertical shear diagram efkgh. The zero-line of this diagram is eg, the shear above it being positive or upward, and that below it, negative and downward.

Now, let it be required to find the bending moment at any section, as T, of the beam, the corresponding ordinate of the equilibrium polygon being $t t^{\prime}$. The magnitude of the bending moment depends on the magnitudes and locations of the forces to the left of T; these forces are P_{1} and R_{1}, whose resultant r is equal to $e b$ and acts vertically upward through a point yet to be determined.

Assume the polygon to be cut on the line $t t^{\prime}$. Then, to maintain equilibrium, the stresses S and S^{\prime} in the sides $C t^{\prime}$ and $D t$, respectively, must have a resultant which is equal and opposed to r and which has the same line of action. The resultant r and these two stresses thus form a system of concurrent forces in equilibrium,
and hence their lines of action must meet at the common point m, the intersection of $t^{\prime} C$ and $t D$, prolonged. The line of action of r therefore passes through the point m, distant l from T, and the bending moment M at the section T is $r \times l$.

Let H be the pole-distance in the force polygon. The triangles $m t t^{\prime}$ and $O e b$ are similar. Hence :

$$
\begin{gathered}
e b: t t^{\prime}:: O e: m t \\
r: t t^{\prime}:: H: l \\
r \times l=t t^{\prime} \times H=M .
\end{gathered}
$$

That is, as H is the same for all the forces and as the ordinate $t t^{\prime}$ is parallel to the lines of action of the latter, the bending moment at any section of the beam is proportional to the corresponding ordinate of the equilibrium polygon, and is equal to the product of the length of that ordinate by the pole-distance. This principle holds only when the lines of action of the forces acting on the beam are parallel and the section considered is parallel to those lines.

Under these conditions, the bending moment diagram is the equilibrium polygon for the forces acting on the beam. Figure 15 represents this diagram for concentrated loads. If, as in Fig. I6, the beam is covered by a uniform load of w pounds per unit of length and the span be s, the left reaction will be one-half of the total load, or $w s / 2$, and, at any section, distant x from the left support, the bending moment will be:

$$
M=w s x / 2-w x \times x / 2
$$

which is the equation of a parabola whose maximum ordinate $w s^{2} / 8$ occurs at the middle of the beam, where $x=s / 2$.

As with the vertical shear, the bending moment may be either positive or negative. For positive moments, the diagram is usually drawn above the zero-line, and, for negative moments, below it, although this practice is not invariable.

12 Moment Scale. To make practical use of the equilibrium polygon as a bending moment diagram, the scales of the force and equilibrium polygons must be considered. Thus if, in the equilibrium polygon, Fig. 15, the spacing of the forces be on a linear scale of 4 feet to the inch, or 48 to I , the length of the ordinate $t t^{\prime}$, as measured in inches from the diagram, must be multiplied by 48 to give the result in pound-inches, or by 4 to obtain it in pound-feet. Again, if the force polygon be laid out on a force scale of 400 pounds to the inch, and the measured length of the pole distance H be $\mathrm{I}_{\frac{1}{4}}$ inches, then $H=1.25 \times 400=500$ pounds. The $m o-$ ment scale, by which $t t^{\prime}$ and similar ordinates are to be measured, is then the product of the linear scale by the pole distance measured on the force-scale or, in this case:

$$
4 \times 500=2000 \text { pound-feet per inch, }
$$

to obtain M in pound-feet, or
$48 \times 500=24,000$ pound-inches,
to obtain M in pound-inches.

On the linear scale, as above, the measured length of $t t^{\prime}$ in the original drawing was 0.725 inch, and the bending moment M at the section T is therefore

$$
0.725 \times 2000=1450 \text { pound-feet, }
$$

or

$$
0.725 \times 24,000=17,400 \text { pound-inches } .
$$

13. Twisting Moments. Shafting transmits power by torsion. The driving pulley pulls forward, the driven pulley drags backward, and hence the shaft between them is twisted by an amount depending on its material and the resistance to its forward motion. For equilibrium, the moment of the driving force must be equal to that of the resistance, and therefore the twisting moment is uniform throughout the shaft between the driving and driven pulleys.

The effect of torsion is to produce shearing stress on the shaft in planes perpendicular to the axis. The moment of resistance of the shaft to twisting is $S_{s} J / c$, which is evidently equal to the driving moment. S_{8} is here the unit shearing stress at the distance c of the most remote fibre from the axis, i.e. at the outer extremity of the radius, and J is the polar moment of inertia of the cross-section of the shaft. For a solid cylindrical shaft of diameter $d_{1}, J=\pi d_{1}^{4} / 32$; for a hollow cylindrical shaft of external diameter d_{1} and internal diameter $d, J=\pi\left(d_{1}^{4}-d^{4}\right) / 32$.

The driving moment - and hence its equal, the twisting moment - may be expressed, as with bending moments, in pound-inches, pounds- or ton-feet, etc. Since the twisting mornent is uniform throughout the length
of shafting under torsion, its diagram is simply a rectangle of that length and having a height equal to the moment expressed in pound-inches, etc., to any given moment-scale, as shown in Fig. ig.
14. Bending and Twisting Moments combined : Equivalent Bending and Twisting Moments. Shafts may be subjected to both twisting by the driving moment and to bending by the weights of gears and pulleys, the pull of belt-tensions, etc. In such cases, in place of finding the stress due to each of these actions separately and taking their sum, it is more convenient to compute the stress corresponding with an assumed bending or twisting moment which is equivalent in its effect to the original bending moment and the twisting moment combined.

Let M_{b} be the bending moment, M_{t} the twisting moment, and $E M_{b}$ the equivalent bending moment. Then, it can be shown, by the relation between the polar and rectangular moments of inertia for a circular cross-section, that:

$$
E M_{b}=\frac{1}{2}\left(M_{b}+\sqrt{M_{b}^{2}+M_{t}^{2}}\right) .
$$

Similarly, letting $E M_{t}$ be the equivalent twisting moment, we have:

$$
E M_{t}=M_{b}+\sqrt{M_{b}^{2}+M_{t}^{2}} .
$$

These expressions hold only for solid cylindrical bodies, like a shaft.

Bending moments, when laid out by the same moment scale, can be treated exactly like forces, i.e., a line can
be drawn representing each moment, and a force polygon constructed for a series of these moments. The resultant bending moment of two or more such moments in different planes can thus be found. Similarly, twisting and bending moments, drawn to the same moment scale, can be combined to form the equivalent bending or twisting moment by applying the equations just given. Example 13 shows the methods for these combinations.

EXAMPLES

io. I-Beam: Uniformly Distributed Load. - The methods of treating a uniformly distributed load are an extension of those used for concentrated loads, as shown in Fig. I5. When the load is uniform over the entire span of a beam, the number of equal loads or parallel forces becomes indefinitely large, since the weight of each elementary particle of the load acts at the centre of gravity of that particle. In finding the bending moment at any section of the beam, these elementary forces to the left of that section may be replaced by their resultant, which acts at the centre of gravity of the total load to the left and is equal in magnitude to that load.

Thus, in Fig. 16 , let $A B$ be a simple beam of span s and carrying a uniformly distributed load of w pounds per unit of length. The total load is then $w \times s=W$ the left reaction is $W / 2=w s / 2$, and the bending moment at any section a, distant x from the left support, is (Art. 9):

$$
M=w s / 2 \times x-w x \times x / 2,
$$

since $w x$ is the total weight of that portion of the load between a and $A, x / 2$ is the distance of the centre of gravity of $w x$ from a, and hence the lever-arm of that weight, and x is the similar arm of the left reaction R_{1}. This expression for M is the equation of a parabola, as $A^{\prime} a^{\prime} B^{\prime}$, whose ordinate is zero at each support and a maximum at mid-span. At the latter point, $x=s / 2$ and $M=$ $w s^{2} / 8=W s / 8$.

The curve of bending moments can be drawn by computing the value of the moment at mid-span, laying off this value there to any suitable moment scale, and then describing a parabola through the point D^{\prime} thus obtained, and the points A^{\prime} and B^{\prime}. If the total load be divided into any number, as three equal parts, vertical lines of action be drawn through the centres of gravity of these parts, the three equal loads be set off on the load-line $b c$, and the force and equilibrium polygons, $O b c$ and $A^{\prime} C D^{\prime} E^{\prime} B^{\prime}$, be constructed, it will be found that the points C^{\prime}, D^{\prime}, and E^{\prime} will lie on the parabolic curve. If the load be divided into an indefinitely large number of equal parts, the equilibrium polygon and the curve will coincide.

As an example, take a 15 -inch I-beam of 16 feet span,
weighing 50 pounds per foot of length, and carrying a uniformly distributed load of 43,000 pounds, including its own weight. It is required to determine the maximum fibre stress in pounds per square inch.

The maximum stress will occur at mid-span, where $M=W s / 8$. By the common theory of flexure, M is also equal to $S I / c$ (Art. io). Equating :

$$
S I / c=W s / 8=M,
$$

in which S is the maximum stress, I is the rectangular moment of inertia of the cross-section of the beam about a neutral axis passing through the centre of gravity of that cross section and perpendicular to the web, $c=15 / 2=7.5$ is the distance of the most remote fibre from the neutral axis, $W=43,000$ pounds, and $s=16$ feet $=$ 192 inches. For this beam, $I=483.4$, and hence $I / c=64.5$. Substituting:

$$
\begin{aligned}
& S \times 64.5=43,000 \times 192 / 8 \\
& S=16,000 \text { pounds per square inch. }
\end{aligned}
$$

The maximum bending moment is

$$
S \times 64.5=1,032,000 \text { pound-inches, }
$$

which is the moment given by the ordinate at D^{\prime}, Fig. 16, when that ordinate is measured by the moment scale computed as described in Art. I2.
if. Locomotive Side Rod with Uniform Load due to Centrifugal Force. The parallel or side rod connecting the two driving wheels of a locomotive, is an example of a simple beam carrying a uniformly distributed load produced by centrifugal force. Every
point in the rod is revolving in a circle whose radius is the length of the crank. When a body of weight W rotates about an axis in a circle of radius r with a uniform velocity v, the centrifugal force acting radially outward on the body is:

$$
F=W v^{2} / g r,
$$

in which g is the acceleration of gravity, or 32.2 feet per second per second.

Fig. 17
On each elementary particle of the revolving side rod, there is acting, therefore, a centrifugal force parallel to the crank. These forces have their maximum effect in bending the rod, when the latter is in its highest or lowest position, as shown in Fig. 17, and the lines of action of the forces are perpendicular to the axis of the rod ; when the rod is on the line of centres, the forces
act along its axis to produce direct tension or compression; at any intermediate position, their effect on the rod is partly flexural and partly to produce direct stress, as above.

Let V be the circumferential velocity of the driving wheels, which is that of the train ; v, the corresponding velocity of the crank pins; and R and r, the radii of the driving wheels and the crank pin circles, respectively. Then:

$$
\begin{aligned}
v: V & : r: R ; \\
v & =\frac{V r}{R} .
\end{aligned}
$$

Again, let w be the weight of a unit of length of a side rod of length l, and let f be the corresponding centrifugal load when the rod is in its highest or lowest position and the bending effect is a maximum. Then (Example 10), the maximum bending moment is

$$
M=f l^{2} / 8=F l / 8=S I / c .
$$

But

$$
f=w v^{2} / g r=w u r V^{2} / g R^{2} .
$$

Substituting,

$$
M=w r V^{2} l^{2} / 8 g R^{2},
$$

and

$$
S=M c / I=\left(w r V^{2} l^{2} / 8 g R^{2}\right) \times c / I,
$$

which are the expressions for the bending moment and maximum stress at the mid-length of the rod.

In the force polygon, Fig. 17, let $a b=F=f l=$ the total centrifugal load. Construct the force polygon $O a b$ and the corresponding equilibrium polygon $A C B$, and, through the points A, C, and B draw a parabolic
curve. The bending moment diagram, for the highest and lowest positions of the rod, will then be the area included between the curve and the zero line $A B$.

As an example, take a locomotive with cylinders of 20 inches diameter and 26 inches stroke; driving wheels, 6 feet 8 inches diameter; side rods, 7 feet 2 inches long between centres and of I-section, $2 \frac{1}{2} \times 5 \frac{3}{4}$ inches, as shown in Fig. 17; train speed, 80 miles per hour.

In substituting in the expressions for M and S, the values must be given in the same units of length and time. Taking the inch and the second as these units, $g=32.2 \times 12=386.4$ inches per second per second; $V=80$ miles per hour $=117.3$ feet per second $=1407.6$ inches per second; $R=80 / 2=40$ inches ; $r=26 / 2=$ 13 inches; $v=r V / R=13 \times 1407.6 / 40=457.47$ inches per second; $l=86$ inches; and the weight of the steel rod (except ends) per inch of length is $w=\mathrm{I} .93$ pounds. The moment of inertia I of the cross-section of the rod about an axis perpendicular to the web is 29.606; $c=$ 2.875 inches; and the section modulus $I / c=10.29$ and its reciprocal $c / I=0.097$.

Substituting in the formulas, we have: centrifugal force per inch of length of $\mathrm{bar}=f=80.48$ pounds; total centrifugal load $=F=80.48 \times 86=692$ r pounds; bending moment at mid-length of bar (ordinate at C, Fig. 17) $=M=692 \mathrm{I} \times \frac{86}{8}=74,40 \mathrm{I}$ pound-inches; and the maximum stress at mid-length $=S=74,401 \times 0.097=$ 7217 pounds per square inch, a result which is low owing to the fact that the rod is short and its moment of inertia is relatively large. With some rods, 100 inches
or more in length, this stress at this speed is approximately I4,000 pounds per square inch.

It will be understood that these calculations refer only to the stress produced by centrifugal force. There is, in addition, a direct compression or tension in the rod,

Fig. 18
whose maximum value, with two driving wheels on each side, is one-half of the greatest thrust on the piston. The rod, when under compression, acts as a column, and its cross-sectional area should be sufficiently great to keep the direct compressive stress below 5000 pounds per square inch. Finally, there may be various indeterminate stresses, due to lack of alignment, and momentarily, to unequal adhesion of the driving wheels.
i2. Girder Stay with Stresses Produced by its

Supporting a Continuous Beam under Uniform Load. Figure 18 represents a girder stay for the top of the combustion chamber of a marine cylindrical boiler. The stay is a beam of 25 inches span and is formed of two steel plates, each $7 \times 7 \frac{1}{8}$ inches; the stays are spaced $7 \frac{1}{2}$ inches apart, centre to centre. The working pressure is 160 pounds, gauge. The resultant load on the top of the combustion chamber is transmitted to each stay by three bolts, spaced $6 \frac{1}{4}$ inches apart, and $I_{6} \frac{17}{4}$ inches diameter at the root of the thread. Each bolt passes through a yoke-plate at the top which divides the load between the two parts of the stay and also keeps them from separating. It is required to find the maximum stress in the two plates of the stay.

An approximate method which is sometimes used, is to assume that the stay, as a simple beam, carries, through each of its three bolts, one-fourth of the total load on the strip of 25 inches span and $7 \frac{1}{2}$ inches width, the remaining fourth being divided equally between the tube-sheet and the back plate of the combustion chamber. On this basis, we have, for each stay :

Total load on braced strip $=25 \times 7.5 \times 160=30,000 \mathrm{lb}$. Load on each bolt $=$ span load between bolts $=30,000 / 4=7.500 \mathrm{lb}$. Load on tube sheet $=$ load on back plate $=7500 / 2=3,750 \mathrm{lb}$.

The problem then reduces to that of a simple beam $A B$, Fig. 18, having three concentrated and approximately equally spaced loads, each of 7500 pounds, and hence an effective reaction at each support of $7500 \times \frac{3}{2}$ $=11,250$ pounds. Constructing the force and equilib-
rium polygons, $O a b$ and $A C B$, the maximum bending moment at C is found, by measuring the ordinate there, to be 93,750 pound-inches $=M=S I / c$ (Art. Io).

For a rectangle of base b and depth $d, I=b d^{3} / \mathrm{I} 2$ and $c=d / 2$. Hence $I / c=b d^{2} / 6$ and $S=6 M / b d^{2}$. In this case, the two plates of the girder are virtually combined, since the yoke-plate and the central line of rivets prevent buckling. Therefore, $b=\frac{7}{8} \times 2=1.75$ inches, $d=7.5$ inches, and
$S=\frac{6 \times 93,750}{1.75 \times 7.5 \times 7.5}=5714$ pounds per square inch, which is the maximum stress in the girder, since the ordinate at C gives the maximum bending moment.

This method is, as stated, approximate. For an accurate determination of the stresses, the top of the combustion chamber should be treated as a series of continuous beams, the end supports of which are the walls of the chamber, the bolts being the intermediate supports. The reactions at these intermediate supports form the loads on the bolts, and, when these loads are found, the girder may be treated, as before, as a simple beam.

Referring to the top plan of the combustion chamber in Fig. 18, it will be seen that there are 8 equally spaced stays, each supporting a transverse section, 7.5×25 inches, of the top, which section is virtually a continuous beam, supported from above. In this section, there are 4 equal spans, $6 \frac{1}{4}$ inches long, the load on each being $6.25 \times 7.5 \times 160=7500$ pounds. In the transverse direction, parallel to the stay, the top of the chamber
will sag under the load and between the bolts, thus producing bending moments in that direction. Let $w=$ span load $=7500$ pounds. Then, according to the Theorem of Three Moments, the reactions at the 5 supports are:

Support	I	2	3	4	5
Reaction	II $w / 28$	$32 w / 28$	$26 w / 28$	$.32 w / 28$	II $w / 28$

It will be seen that the distribution of the load is not uniform and that the greater loads come on the second and fourth supports, i.e., on the two outer bolts, $a a$, of the stay. Each of these bolts supports one-half of each of the adjacent spans of the transverse strip, so that, owing to the bending stress, the area thus supported may be considered as having a load of $w_{1}=32 w / 28$ $=857 \mathrm{I}$ pounds. The load on the similar central area and bolt is $w_{2}=26 w / 28=6964$ pounds, and the total load on the 5 supports is $112 w / 28=30,000$ pounds, as previously computed.

Again, the top of the combustion chamber will sag, under the load and between the bolts, in the longitudinal direction, at right angles to the stays. It may, therefore, be considered as divided in that direction into 3 continuous beams, each with 9 equal spans and ro supports. The reaction at support io is the same as that at 2, etc. Neglecting the load just computed for transverse bending, we have, for the original span load w (Theorem of Three Moments):

Support	I	2	3	4
Reaction,	$209 w / 530$,	$60 \mathrm{I} w / 530$,	$5 \mathrm{II} w / 530$,	$535 w / 530$,
$529 w / 530$				

The greater loads are therefore those on supports 2 and 9 , which supports, for the 3 beams, are the 3 bolts in each of the two end girders of the series. These two stays are therefore those which are under the maximum stress.

Considering both transverse and longitudinal bending, the resultant loads on the bolts of the two end girders are :

On each outer bolt, a, load $=(w \times 32 / 28)(601 / 530)=1.29 w=9675 \mathrm{lb}$.
On middle bolt, b, load $=(w \times 26 / 28)(601 / 530)=1.05 w=7875 \mathrm{lb}$.
That is, the outer two of the three continuous beams assumed for longitudinal bending stresses are considered as having a span load throughout of $w_{1}=857$ I pounds, and similarly, the middle beam, a uniform span load of $w_{2}=6964$ pounds.

Treating the girder as a simple beam and following the approximate method in all respects, except the changes as above in the bolt loads, the maximum stress S in the girder is found to be 6686 pounds per square inch, or 17 per cent more than that given by the approximate method. These calculations apply only to the two girder stays at the ends of the row; the intermediate girders are under less stress, as is shown by the coefficients for the reactions at the corresponding supports. The values given for these coefficients refer only to beams of constant cross-section, under a uniform load, and with all supports at the same level. Strictly speaking, they are limited also to beams with free ends (Art. 7), although the difference in this respect is not material in this case.
i3. Counter Shaft: Twisting and Bending Combined. Figure 19 represents a counter shaft $A B$, sup-

Fig. 19
ported in bearings at A and B, and carrying a 26 -inch driving pulley C and a 24 -inch driven pulley D, both of

5 -inch face. The belt drive at C is assumed to be horizontal; that at D, vertical. Take the vertical load at D as 250 pounds, this including the weights of pulley and belting and the pull of the belt tension. At C, let the vertical load, or weights of pulley and belting, be 100 pounds, and the horizontal load, or belt tension, 200 pounds.

The shaft is bent in a vertical plane by a force $P_{1}=250$ pounds acting at D and a force $P_{2}=100$ pounds acting at C, and, in a horizontal plane, by the force $P_{3}=200$ pounds acting at C. It is also twisted, between C and D, by a driving moment $=200 \times \frac{26}{2}=$ 2600 pound-inches.

The diagram for the vertical bending moments is marked V. The moments shown by the portion of the diagram above the zero line are positive, i.e. the lower side of the shaft is in tension and is bent in a convex curve; the moments below the line are negative, the lower side of the shaft being compressed. The reactions are: $R^{\prime}{ }_{V}=150$ pounds and $R^{\prime \prime}{ }_{V}=200$ pounds.

Diagram H gives the horizontal bending moments. The latter are all positive, and, assuming that the pulley driving C is in front of it, the rear side of the shaft is in tension and convex. The reactions are: $R^{\prime}{ }_{h}=33.3$ pounds and $R^{\prime \prime}{ }_{h}=233.3$ pounds, the two acting in opposite directions.

The linear scale of the original shaft diagram was 1 foot $=\mathrm{I}$ inch, or I 2 to I ; the scale of the force polygon was 200 pounds $=1$ inch ; and the pole distance F was $\mathrm{I} \frac{1}{4}$ inches $=250$ pounds. Hence (Art. 12), the
moment scale for V and H was $12 \times 250=3000$ poundinches per inch of measured length of any ordinate.

The actual reactions at the bearings are the resultants of the vertical and horizontal reactions, as above. Thus, as in (a), laying off $R^{\prime \prime}{ }_{V}$ and $R^{\prime \prime}{ }_{h}$ perpendicular to each other, their resultant $d m=R_{2}$, inclined at the angle θ to the horizontal ; R_{1} can be found similarly, but its inclination differs and its line of action lies on the other side of the shaft.

Diagrams V and H are combined to form the resultant bending moment diagram R by a method (Art. 14) similar to that used for the reactions. Thus, as in (b), let v be the vertical bending moment at the section D of the shaft and h the similar horizontal moment; their resultant r is, on the same moment-scale, the corresponding ordinate of diagram R. The latter diagram gives simply the magnitudes of the resultant ordinates at all points, without regard to their sign; it is not a plane surface, but is warped, since the inclination of the ordinates changes continually.

The diagram for the twisting moment between C and D is represented by the rectangle T, whose height is made equal to this moment, or 2600 pound-inches, on the same moment scale as before. Diagrams R and T are combined to form diagram E for the equivalent bending moments by the method shown in (c). The equation for the equivalent bending moment (Art. 14) is :

$$
E M_{b}=\frac{1}{2}\left(M_{b}+\sqrt{M_{b}^{2}+M_{t}^{2}}\right),
$$

in which M_{ι} and M_{t} are respectively the bending and twist-
ing moments at the section considered and $E M_{b}$ is the corresponding equivalent bending moment. To apply this expression graphically for any section, as that at D, lay off, as in (c), $f g$ and $g k$ equal respectively to one-half the bending and twisting moments. Revolve f to f^{\prime} and g to g^{\prime}. Then, for the section at D :

$$
E M_{b}=g^{\prime} k=\text { ordinate } e .
$$

This follows since, for that section,

$$
f^{\prime} g^{\prime}=\frac{1}{2} M_{b} \text { and } f^{\prime} k=\frac{1}{2} \sqrt{M_{b}^{2}+M_{t}^{2}} .
$$

This method is used for all sections to the right of D; to the left of it, no twisting moment exists and the original bending moment holds.

Considering strength only, the shaft should be designed for the equivalent bending moment shown by the maximum ordinate in diagram E. This ordinate is that at section D and is equal to 2516 pound-inches. The resisting moment (Art. Io) of a solid cylinder to bending strain is $S I / c$, in which S is the maximum permissible working stress and $I / c=\pi d^{3} / 32, d$ being the diameter in inches. Equating the equivalent bending and resisting moments and taking S as 16,000 pounds per square inch :

$$
\begin{aligned}
25 \mathrm{I} 6 & =\mathrm{I} 6,000 \times \pi d^{3} / 32 \\
d & =\mathrm{I} . \mathrm{I} 7 \text { inches },
\end{aligned}
$$

which is less than is customary in practice, since the stiffness of the shaft and the bearing surface at the journals must be considered, as well as its strength to resist bending and shearing. The small diameter of
the shaft in this case is produced mainly by the relatively low value of the bending moment, and this low value is due to the fact that the shaft is short and the weight of pulley C acts to balance that of pulley D.

FIG. 20
14. Centre Crank Shaft: Twisting and Bending Combined. Figure 20 represents the centre crank shaft of a vertical, high pressure engine, the shaft being supported in bearings at A and B and delivering its
power as a twisting moment at the left-hand end. For simplicity, neglect the weight and friction of the shaft and reciprocating parts. It is required to find the equivalent bending moments on the shaft and cranks when the engine is developing its maximum power, i.e., when, as in (A), the connecting rod and cranks are at right angles on the downward stroke.

The data are: cylinder diameter, 15 inches; stroke, I8 inches; length of connecting rod, 29 inches; maximum unbalanced pressure on piston, 100 pounds per square inch; force on piston at position shown in $(A)=Q=\pi \times 15 \times 15 \times \frac{1}{4} \times 100=17,671$ pounds; corresponding thrust on connecting rod $=P=Q / \cos \theta=$ 17,671 \times I. $04=18,400$ pounds, about.

In the position shown in (A), the thrust P is resisted by an equal, opposite, and parallel reaction R, whose line of action passes through the centre of the shaft. To simplify the diagrams to be drawn, the forces P and R, considered as bending forces only, are assumed to be revolved through 90 degrees, as shown by dotted lines, and hence to act in the plane of the crank axes-an assumption which evidently does not alter the magnitude of the bending action of these forces on the shaft and crank pin. With regard to the bending of the crank and the twisting of the latter, of the crank pin, and of a portion of the shaft, the two forces are considered as acting in their original planes.

Let $a b c d e f$ represent the neutral axes of the shaft, cranks, and crank pin, i.e. a line coinciding with the axes of the shaft and pin and passing through the
centres of gravity of all transverse sections of the cranks.

The shaft is subjected to bending from a to b and from e to f, and to twisting from b to a and onward to the left; the crank pin is under both bending and twisting strains throughout its entire length ; and both cranks are twisted on their neutral axes and are also bent as cantilevers (Art. 7).

On the load-line $g h$, lay off P and draw the force polygon $O g h$ and the bending moment diagram $a D f$. The ray $O g^{\prime}$, parallel to the closing line af, determines the magnitude of the reactions, which are : $R_{1}=11,040$ pounds and $R_{2}=7360$ pounds. With a linear scale of 8 to I , a force scale of 8000 pounds per inch, and a pole distance of $\mathrm{I} \frac{1}{2}$ inches, the moment scale (Art. 12) is 96,000 pound-inches per inch.

Shaft. The right-hand section of the shaft acts simply as a support and is therefore under bending strain only, the moments being given by the portion $f_{e k}$ of the diagram.

The similar bending moment diagram for the lefthand section is $a b m$. This section is also subjected to twisting by the driving moment, $P \times r=18,400 \times 9=$ 165,600 pound-inches. Using the same moment scale as above, the twisting moment diagram is bnoa. Combining the two diagrams by the method employed in Example 13, the equivalent bending moment diagram is $b n^{\prime} o^{\prime} a$.

Crank Pin. The crank pin and the parts of the cranks lying between the two neutral axes of the latter
are under bending strain, the moments of which are given by the portion bmDke of the bending moment diagram.

The pin is also twisted by a moment,

$$
R_{2} \times r=7360 \times 9=66,240 \text { pound-inches. }
$$

This follows since if, in the original plane of the right reaction R_{2}, there be applied at e two equal and opposite forces $R_{2}{ }^{\prime}$ and $R_{2}{ }^{\prime \prime}$, each equal to R_{2}, equilibrium will still exist, but the forces $R_{2}{ }^{\prime}$ and R_{2} will form a couple of arm ef tending to twist the crank on its neutral axis, and the force $R_{2}{ }^{\prime \prime}=R_{2}$ will act, with the leverage $e d=r$, to twist the crank pin. These forces are shown in the diagram as if they were in the plane of the paper; they really act in the plane of R as in (A).

The twisting moment diagram is cpqd. Combining this with diagram $b m D k e$, we have the equivalent bending moment diagram $c p^{\prime} d^{\prime} q^{\prime} d$. Since the pin is cylin drical, the maximum ordinate of the latter diagram, that at the centre, is the only one used in designing the pin. The equivalent bending moment corresponding with this ordinate is 159,360 pound-inches.

Crank C_{2}. As has been shown, the right-hand crank is subjected to twisting on its neutral axis $e d$ and to bending as a cantilever.

The bending is due to the fact that the crank pin is twisted, through the medium of the crank, by the force R_{2} acting at e. The bending moment at the outer end d of the crank is therefore $R_{2} \times r=$ twisting moment
on crank $=66,240$ pound-inches; at the inner end e, the bending moment is zero. Revolving $d q$ to $d r$, the bending moment diagram for the crank is $e d r$; the ordinates being horizontal.

As explained previously, the crank is twisted on its neutral axis by a couple of force R_{2} and of arm ef. The twisting moment is therefore $R_{2} \times e f$. Considering the right reaction and not the left as previously, the bending moment $e k$ at the section e is equal to the product of the right reaction by the distance from e to the right support, or $R_{2} \times e f$, which is also the twisting moment as above. Revolving $e k$ to $e k^{\prime}$, the twisting moment diagram is the rectangle $e k^{\prime} r^{\prime} d$. Combining the two diagrams, we have the equivalent bending moment diagram $e k^{\prime \prime} r^{\prime \prime} d$. The maximum ordinate $d r^{\prime \prime}$ of this diagram, measured by the moment scale, gives an equivalent bending moment of 100,800 pound-inches.

Crank C_{1}. The left-hand crank C_{1} is subjected to similar bending and twisting actions.

With regard to bending strain, the crank is a cantilever, fixed at b and carrying the load P at c. The bending moment at the inner end b is therefore $P \times r=165,600$ pound-inches, which is the twisting moment $b n$ on the left-hand section of the shaft; the moment at the inner end c is zero. Revolving $b n$ to $b u$, the bending moment diagram is $c b u$, the ordinates being horizontal.

By the same reasoning as that followed for the righthand crank, it can be shown that crank C_{1} is twisted on its neutral axis $b c$ by the left reaction R_{1} acting with the leverage $a b$. The twisting moment is therefore
$R_{1} \times a b$, which moment is equal to $b m$, the bending moment on the shaft at the section b. Revolving $b m$ to $b m^{\prime}$, the twisting moment diagram is the rectangle $b m^{\prime} c^{\prime} c$.

The combination of the two diagrams gives the equivalent bending moment diagram $b m^{\prime \prime} c^{\prime \prime} c$. The maximum ordinate $b m^{\prime \prime}$ of this diagram corresponds with a bending moment of 180,000 pound-inches.

Diameter of Crank Pin. The maximum equivalent bending moment on the crank pin has been found to be 159,360 pound-inches, which is the value of M in the formula, $M=S I / c$. If the pin be a solid cylinder of diameter d_{1}, the rectangular moment of inertia $I=\pi d_{1}^{4} / 64$ and $c=d_{1} / 2$. Taking a suitable value for the maximum stress S, the value of d_{1} can be determined as in Example 13.

If the crank pin be of steel and made hollow for lightness, the method is the same, except that the value of I is changed, being now the difference between the moments of inertia of the inner and outer circular sections. For example, if the external diameter be d_{1} and the internal diameter d_{2}, the value of I is $\pi\left(d_{1}{ }^{4}-d_{2}{ }^{4}\right) / 64$ and the area of the cross-section of the pin is $A=\pi\left(d_{1}{ }^{2}-d_{2}{ }^{2}\right) / 4$. Dividing:

$$
\begin{aligned}
\frac{I}{A} & =\frac{d_{1}^{2}+d_{2}^{2}}{16} . \\
I & =\frac{A}{16}\left(d_{1}^{2}+d_{2}^{2}\right) .
\end{aligned}
$$

Making $d_{2}=d_{1} / 2=c$ and $S=10,000$ pounds per square inch,

$$
\begin{aligned}
A & =\frac{3}{16} \pi d_{1}^{2} \\
\frac{I}{c} & =\frac{15}{512} \pi d_{1}^{3}=\frac{159,360}{10,000} \\
d_{1} & =5.6 \text { inches, about. }
\end{aligned}
$$

The maximum shearing stress S_{s} on the pin can be ascertained from the formula $R_{2} \times r=S_{s} J / c$ (Example 13), in which the twisting moment, $R_{2} \times r=66,240$ poundinches and the polar moment of inertia, $J=A\left(d_{1}^{2}+d_{2}^{2}\right) / 8$. With $d_{1}=6$ inches and $d_{2}=c=3$ inches, $J=119$ and S_{s} is 1670 pounds per square inch, a stress which is immaterial. The diameter of the shaft can be found similarly; its twisting moment is greater, and its maximum equivalent bending moment less, than those of the crank pin.

With steel having an elastic limit of 50,000 pounds per square inch, the factor of safety for the crank pin is $50,000 / 10,000=5$. The diameters as computed, 6 and 3 inches, external and internal, would serve for both a hollow shaft and a hollow pin, if the shaft, cranks, and pin were forged in one piece. If the crank shaft be built up, keys would be required for both pin and shaft, and the external diameters should be increased to allow for the keyways.

Dimensions of Cranks. The cranks should be duplicates and should be designed for the maximum moments, which are given by $b m^{\prime \prime}$ and $d r^{\prime \prime}$, at the inner and outer ends, respectively. As a rule, the cross-section is rectangular and the thickness t of the web is constant. For uniform strength throughout, the transverse width
w should vary with the maximum moments, as given by either of the two equivalent bending moment diagrams - a refinement which is possible only with a casting.

The hubs on crank pin and shaft should be long enough for adequate keying and to prevent the crank from jarring loose. In built up shafts, this factor usually determines the thickness t, which is made uniform throughout and equal to the length of the hub, while the width w is also uniform and equal to the maximum external diameter required for the larger of the two hubs. In any event, the maximum stress at any section of a crank of rectangular cross-section can be determined by proper substitution in the general formula, $M=S I / c . \quad M$ is here the maximum bending moment at that section, as given by the equivalent bending moment diagram; S is the corresponding maximum stress which occurs at either of the outer ends of the width $w ; I=t w^{3} / \mathbf{1 2}$; and $c=w / 2$. The values for t and w are, in each case, taken from the dimensions of the section under consideration.

CHAPTER IV

LIVE LOADS: SHEARS AND MOMENTS

The shear and bending moment diagrams which have been considered thus far represent these functions for all sections of a beam carrying stationary loads only. This limitation applies also when these diagrams have been constructed for the moving parts of machines, since the members in motion have been assumed to be at rest for an instant and in momentary equilibrium under the action of the driving; resisting, and supporting forces ; and, further, the shears and moments which have been thus determined, refer only to the given position of the moving parts.

While the general effects of a live or travelling load - as a train passing over a bridge - are, at any instant, precisely the same as those of an equivalent stationary or dead load in the same position, there is, so far as the maximum stresses in the members are concerned, an important difference between the two cases, in that, with every change in the location of the moving load there are corresponding changes in the shears and moments which that load produces. Hence, in each member of a structure traversed by a moving load, there is a continual variation of stress, the maximum range of
which must be determined in order that the member shall be proportioned for adequate strength under all conditions of service. These variations in the shears, moments, and their corresponding stresses will now be examined.
15. Variation of Live Load Shear at Sections to the Left of the Load. (a) Concentrated Loads. Let Fig. 2 I represent a simple beam of span s, traversed by a

Fig. 21
single concentrated load W. The vertical shear V (Art. 8) is the resultant or algebraic sum of all forces to the left of the section considered. With a single moving load, as in this case, V is therefore equal to the left reaction R_{1}. Assume that the load is moving from right to left, and let x be the distance from the right support. Taking moments about the right support :

$$
\begin{aligned}
W \times x & =R_{1} \times s, \\
W x / s & =R_{1}=V,
\end{aligned}
$$

which is the vertical shear for all sections between the points A and B, and to the left of the load.

This expression is the equation of a straight line $a b$ inclined to the horizontal by the angle whose tangent is W / s. When $x=s, \quad R_{1}=V=W$; when $x=0$, $R_{1}=V=0$. Therefore, the horizontal line $a c$ is the zero line, and, at any position of the load, the ordinate y just below the load - or, strictly speaking, immediately to the left of its centre of gravity - and included in the diagram $a b c$ will give V for that section, and similarly for all sections to the left of W. It is evident that this is true, whether the load be moving to the right or left, since, in this case, we have but one concentrated load to consider. The diagram $a b c$, therefore, represents the variation of the vertical shear at all sections to the left of the load.

For sections to the right of the load, $V=R_{1}-W$, an expression which is the same as the preceding equation, except that there is a constant deduction W. It is, therefore, the equation of the straight line $c d$, which is parallel to $b a$, and starts at the point c of the zero line. Hence, the diagram cad represents the variation of the shear, now negative, for the sections to the right of the load.
(b) Uniform Load. Now, consider a moving uniform load, long enough to cover the span when located between the two supports of the beam. In practice, the cars of a railroad train, although not the locomotive and its tender, are considered as such a load in passing over a bridge. This case differs from the one just discussed, in that the total load on the beam varies with the length of the segment of the span covered by the load.

Let Fig. 22 represent a simple beam of span s, carrying a partial uniform load W, composed of unit loads spaced at a unit distance apart. If x be the number of unit distances covered by the load at a given time and

FIG. 22 w be the weight of the unit load, then the total load at that time will be $w x=W$, which is therefore variable. This total load, or resultant of all of the unit loads, will be taken as concentrated at the centre of gravity of the uniform load. It is required to determine the variation in the vertical shear for all sections of the beam to the left of the head of this moving uniform load.

Assume the load to be travelling from right to left. For all sections to the left of the head H of the load, $V=R_{1}$. Taking moments about the right support :

$$
\begin{aligned}
R_{1} \times s & =W \times x / 2=w x^{2} / 2 \\
V & =R_{1}=\frac{w}{2 s} \cdot x^{2}
\end{aligned}
$$

which is the equation of a parabola. If $x=0, V=0$; if $x=s, V=w s / 2$. Plotting $a b$ as a parabolic curve in
accordance with the equation for V, the diagram $a b c$ represents the variation of V, for all sections to the left of H, while the load of final length s moves from right to left. Wherever H may be located, the ordinate y immediately below it will give the value of V from H to the left support, for that position of the load.

Again, assume the load to be moving from left to right and measure x from the left support. Taking moments about the right support:

$$
\begin{aligned}
R_{1} \times s & =W(s-x / 2)=w x(s-x / 2) \\
R_{1} & =w x-w x^{2} / 2 s \\
V & =R_{1}-W=w x-w x^{2} / 2 s-w x=-w x^{2} / 2 s,
\end{aligned}
$$

which is the same equation as before, except that V is now negative. If $x=0, V=0$; if $x=s, V=-w s / 2$. Hence, the diagram $c d a$ represents the variation of V for all sections between H and the left support, the ordinate y under H giving the required magnitude of V, which is, in all cases, negative.
16. Influence Diagrams: Influence Lines. The line $a b$ and the diagram $a b c$, Fig. 21, are termed an influence line and an influence diagram, respectively. In this case, since $V=R_{1}$, they represent the variation of both the vertical shear and the left reaction. Influence diagrams are usually constructed on the basis of the unit load - a pound, kilogram, or ton. The ordinates of the diagram then refer to the effect of that unit load only, and, to obtain the actual reaction, shear, etc., for the given load, the length of each ordinate is multiplied by the number of pounds, tons, etc., in that load.
17. Variation of Live Load Shear at any Given Section of a Beam. (a) Concentrated Load. Let Fig. 23 represent a single concentrated load W, moving

FIG. 23
from right to left over a simple beam of span s. It is required to find the variation in the shear at the section H, distant m units from the left support, while the load traverses the beam.

Assume the load to be to the right of H and distant x units from the right support. Taking moments about that support:

$$
\begin{aligned}
W \times x & =R_{1} \times s \\
R_{1} & =V=\frac{W}{s} \times x
\end{aligned}
$$

which is the equation of the straight line $a b$, inclined to the horizontal by the angle whose tangent is W / s. If $x=0, V=0$; if $x=s, V=W$. Hence, $a c$ is the zero line, and the diagram $a b c$ gives the magnitude of V for all sections between W and the left support; and, for the section at H, the ordinate y, immediately under
the load and included within the partial diagram ade, represents V, while W is to the right of H.

When W is between H and the left support, R_{1} is still equal to $W x / s$, but $V=R_{1}-W$ and is negative, so that the line $c f$ is parallel to $b a$ and begins at the point c, where $x=s$ and $V=0$. Hence, the ordinate immediately below the load and included within the partial diagram gec gives the shear between the load and the left support, which shear is always negative. The complete diagram, representing the variation of V at the

FIG. 24 section H for all positions of the load, is adegce. This diagram serves whether the load moves toward the right or the left.
(b) Uniform Load. Let Fig. 24 represent a simple beam of span s, traversed from right to left by a uniform load of w pounds per unit of length of the span, the load being long enough to cover the span. It is required to find the variation in shear at the section H, distant m units from the left support, while the head of the load crosses the span.

Draw the zero line $a b=s$; from b, erect $b c$, and, from a, let fall $a d$, both equal to w; draw $a c$ and $b d$. Let
$x=$ length of the load, as measured from the right support. Then, as shown previously, while the head of the load is to the right of section H, the shear at that section is positive and is:

$$
V=R_{1}=w x^{2} / 2 s .
$$

With the head of the load at H, this expression is the area of the triangle aef, forming the part of the diagram below the load, since :

$$
\begin{aligned}
& e f: x:: w: s, \\
& e f=w x / 2, \\
& \text { area } a e f=e f \times x / 2=w x^{2} / 2 s=V .
\end{aligned}
$$

When the lead moves to the section H^{\prime}, distant n units from H, the shear at section H is the resultant of the positive shear produced by the partial load of length $x-n$ (x being now the distance from the right support to the point H^{\prime}) and the negative shear due to the load of length n, both in the positions shown. This resultant shear is the difference between the areas of the positive and negative sections of the diagram below the load, or area aef minus fghk. As before, $R_{1}=w x^{2} / 2 s$, but the shear at section H is now equal to R_{1} minus the load $n w$ to the left of H, or

$$
V=R_{1}-n w=w x^{2} / 2 s-n w .
$$

With the head of the load at $H^{\prime}, w x^{2} / 2 s$ is the area of the triangle $a k p$, while $n w$ is the area of the parallelogram eghp. Hence
area $a k p-$ area $n w=$ area $a e f-$ area $f g h k$.
18. Maximum Live Load Shear. From Fig. 24, it will be seen that, when the given section, as that at H^{\prime}, divides
the span into two unequal segments, the maximum numerical value of the live load shear due to a uniform load will occur when the load covers fully and only the greater segment of the span, and that this value will grow with increase in the length of the segment, as compared with that of the span. If this greater and loaded segment lies to the right of the section considered, the maximum live load shear will be positive ; if to the left, negative.

With a series of concentrated loads differing in magnitude and unequally spaced, the principle as to the loading of the greater segment of the span to obtain the maximum live load shear still holds, except that the maximum shear may occur when one or more of the loads have passed beyond the section considered and are supported by the smaller segment of the beam. This follows from the fact that the value of the shear depends primarily on that of the left reaction, and that the value of the latter grows with every added load borne by the beam. Hence, with some of the loads on the lesser segment, the shear, or algebraic sum of the increased reaction and these loads, may be greater than the reaction only with the smaller number of loads which the length of the larger segment will admit. The final shear at any section is, in any case, the algebraic sum of those due to the dead and live loads.
19. Counterbracing. The upper diagram, Fig. 25, is an outline of a bridge truss* of the Pratt type, in which

[^1]the diagonal members are built to withstand tension only. As shown in Fig. 24, a uniform load, like a train of cars crossing a bridge truss, produces positive shear in moving from the right abutment to the left and nega-

Fig. 25 tive shear in passing in the other direction. The dead load shear is positive from the left abutment to the middle of the truss and negative from the middle to the right abutment. With the train coming from either direction and passing over a 5 -panel truss, like that shown in Fig. 25, the resultant of the shears due to dead and live loads is always positive in the first and second panels (counting from the left), and always negative in the fourth and fifth panels; but, in the middle panel, this resultant shear is positive when the train comes from the right and negative when it enters from the left.

The vertical shear which exists in a panel is a force which acts upward if the shear be positive, and downward if it be negative. In the Pratt truss, under any system of loading, the vertical members are always in compression, and the diagonals are built to take tension only. Hence, when the shear in the middle panel changes from positive to negative, or the reverse, there must be a corresponding shifting, from one diagonal to
the other, of the tensile stress whose vertical component is to resist this shear, i.e. the main tie (diagonal) ceases to act and the counter-tie takes the load, or vice versa, the two ties being oppositely inclined.

Thus, in (a), Fig. 25, the shear in the middle panel is positive; the stress in the vertical $5-4$ is compressive, and therefore acts toward panel-point 4 ; and the stress in the main diagonal $4-7$ is tensile, and acts from point 4. The panel is subjected to the upward force V, and the only vertical forces at point 4 are the compressive stress 5-4 and the vertical component of the tensile stress 4-7. For equilibrium, these vertical forces must be equal and opposite. Hence, V is equal in magnitude to stress 4-5, and also to the vertical component of the stress 4-7, and is the same in direction as stress 5-4 with regard to panel-point 4 . When, as in (b), the shear in the panel becomes negative, V is equal and opposed to the vertical component of the stress in the counter-tie $5-6$, and is equal and like the stress $4-5$ in the vertical, both with regard to panel-point 5 .

When the main diagonal is acting, the counter-tie buckles and is not under stress; owing to their opposite inclination, both ties cannot be strained simultaneously. This is the fundamental principle of counterbracing, which is applied whenever a member is subject to stress reversal and is fitted to take tension only. In the Warren truss, the members are built for both stresses, and counterbraces are not required. In roof trusses the wind loads may cause a reversal of stress in some members, thus necessitating counterbracing.
20. Variation of Bending Moment at any Given Section of a Beam. (a) Concentrated Loads. Let Fig. 26 represent a simple beam of $\operatorname{span} s$, traversed from right to left by a single concentrated load W. It is required to find the variation in the bending moment at the section

Fig. 26
A, distant s_{1} from the left support and s_{2} from that at the right, while the load crosses the beam.

The bending moment (Art. 9) at any section is the moment of the left reaction about any point in that section, minus the similar moments of the loads, if any, to the left of the section. First, let the load W be between the section A and the right support, at the distance x_{2} from the latter. The left reaction is $R_{1}=W x_{2} / s$, and the bending moment at section A is:

$$
M_{2}=R_{1} \times s_{1}=W s_{1} \times x_{2} / s
$$

which is the equation of the straight line $a b$, inclined to the horizontal by the angle whose tangent is s_{1} / s, the weight W being taken, for convenience, as a unit load.

Now, assume the load W to be between the section A and the left support, at the distance x_{1} from the latter. Then, $R_{1}=W\left(s-x_{1}\right) / s$, and the bending moment at section A is:

$$
M_{1}=R_{1} \times s_{1}-W\left(s_{1}-x_{1}\right)=W s_{2} x_{1} / s
$$

Taking W as the unit load, this expression is the equation of the straight line $c d$, inclined to the horizontal by the angle whose tangent is s_{2} / s.

The triangle aec is the influence diagram for the bending moments at section A, when W is equal to the unitload, and the ordinate y_{1} or y_{2} immediately below the load gives the bending moment at A for that position of the load. This follows, since :

$$
\begin{aligned}
& y_{1}: s_{2}:: x_{1}: s \\
& y_{1}=s_{2} \times x_{1} / s=M I_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& y_{2}: s_{1}:: x_{2}: s, \\
& y_{2}=s_{1} \times x_{2} / s=M_{2} .
\end{aligned}
$$

The diagram has been constructed for the unit load. To obtain the bending moment for a load W, greater than unity, each ordinate should be multiplied by the number of units in W.
(b) Uniform Load. The influence diagram in Fig. 26 is drawn for the unit load. With a total uniform load W covering a segment or all of the span, there is a series of unit loads, each equal to w, spaced at unit
distance apart, over the segment covered. The bending moment due to each unit load is given by the ordinate immediately below that load. Hence, the total bending moment produced by the total load W is the sum of these unit moments, or the area of the portion of the influence diagram below the total load W.

Thus, in Fig. 26, let the uniform load be moving from right to left and let the head of the load be at the distance x_{2} from the right support. Taking moments about that support:

$$
R_{1} \times s_{2}=w x_{2} \times x_{2} / 2 ;
$$

and the left reaction is:

$$
R_{1}=w x_{2}^{2} / 2 s .
$$

The bending moment at the section A due to the total load $W=w x$, is :

$$
R_{1} \times s_{1}=w s_{1} x_{2}^{2} / 2 s=M .
$$

But:

$$
\begin{array}{r}
y_{2}: s_{1}: x_{2}: s, \\
y_{2}=s_{1} x_{2} / s ;
\end{array}
$$

and the area of the triangle below the load is:

$$
y_{2} \times x_{2} / 2=s_{1} x_{2}^{2} / 2 s=M,
$$

since w, as the unit load, is equal to unity.
21. Maximum Bending Moments due to Live Loads. The maximum bending moment which is possible at any given section of a beam under any system of loading, depends on two conditions: first, the value of the moment rises with increase in the magnitude of the left reaction ; and, second, this value is lessened by increase
in the moments of any loads to the left of the section. Hence:
(a) With uniform live loads, the maximum moment at any section of a beam occurs when the load covers the entire span.
(b) With concentrated live loads, unequal in magnitude and unequally spaced, the maximum moment at any section occurs when the span carries the greatest possible load, consistent with having one of the largest loads at or near the given section.
22. Live Load Stresses in Trusses and Plate Girders. Either a truss or a girder, under the action of live loads, is essentially but a beam, and as such is subjected to bending moments and vertical shear.

In a truss such as that shown in Fig. 25, the primary function of the web members - as the vertical 4-5 and the diagonal $4-7$ - is to resist the vertical shear, since, if the chords be parallel, these web members are the only ones having either vertical stresses or stresses which can be resolved vertically. Hence, the vertical component of the stress in any diagonal of this truss is equal in magnitude to the vertical shear in the panel in which the diagonal is located, and the stress in the vertical meeting a diagonal at a panel-point in the unloaded chord is equal in magnitude and opposite in direction to the vertical component of the stress in the diagonal.

The chord members - as 4-6 and 5-7, Fig. 25 take the tensile and compressive stresses, respectively,
produced by the bending moments. The stress in either chord, at any given section of such a truss, is equal to the quotient of the bending moment at that section, divided by the depth of the truss. Thus, Fig. 27 represents a segment of a Pratt truss and a corresponding section of the equilibrium

Fig. 27 polygon constructed for the loads and reactions, as for a simple beam. Applying Rankine's Method of Sections, let the truss be cut on the line $a b$, immediately to the right of the vertical $2-3$, so that the bending moments at $a b$ and $2-3$ will be virtually the same. To maintain equilibrium, apply to the severed members, the forces F, F_{1}, and F_{2}, each of which is equal to and like the stress in the member to which it is applied. The segment of the truss is then in equilibrium under the action of these applied forces, the load P at panel-point 3, and the left reaction R_{1}. The two latter can be replaced (Art. ir) by their resultant r, acting vertically through the point E, the intersection of the prolonged sides $B C$ and $A D$ of the equilibrium polygon. For equilibrium to exist, the algebraic sum of the moments of r and the three applied forces, about an axis perpendicular to their plane of action, must be zero. Let d be the depth of the truss. Then, taking moments about panel-point 2 , where the lines of
action of F_{1} and F_{2} meet and their moments are zero, we have:

$$
\begin{aligned}
F \times d & =r \times l \\
F & =r l / d=M / d .
\end{aligned}
$$

since, by Art. $11, r \times l$ is equal to the bending moment at the section $a b$ or $2-3$. It will be observed that these principles relating to the web- and chord-stresses, apply only to trusses with parallel chords. When the upper chord is 'broken' and thus inclined to the lower, there is a vertical component of its stress which must be considered.

In a plate girder, the web plate is usually assumed to take only the same stresses as the web members of a truss with parallel chords, and the flanges - composed of angles and cover-plates, if any - to act as the chord members. The customary method of design regards the web plate as resisting vertical shear only and the flanges as taking the full bending stress; in more accurate work, the resistance of the web plate to bending is considered.

EXAMPLES

15. Plate Girder Bridge with Locomotive Wheel Loads: Maximum Moments and Shears. The weight of a locomotive, as distributed among its driving and pilot wheels, forms a system of vertical loads, more or less unequal and unequally spaced. In designing a bridge, the maximum moments and shears must be determined for the greatest live load which will pass over it. For simplicity in the following example, the locomotive only will be considered ; it is usual to design the
bridge for two coupled locomotives with their tenders, followed by a uniform train load.

Let $A B$, Fig. 28, represent a deck, plate girder bridge for a single track railroad, the effective span and depth

Fig. 28
of the girders being 60 feet and 6 feet, respectively. The load carried by the bridge is one Northern Pacific tandem compound locomotive (igor), whose total weight is 198,000 pounds, 175,000 pounds being on the driving wheels and 23,000 pounds on the engine truck. These weights, when distributed as shown in the figure, are, in
tons of 2000 pounds, 10.94 tons on each driver and 5.75 tons on each pilot wheel. The weights on the wheels at one side of the locomotive constitute the system of live loads borne by each of the two girders forming the bridge. The spacing of these loads is marked in inches below the line $A^{\prime} B^{\prime}$ indicating the span.
(a) Maximum Moments. The system of loads may be located in any position on the span, although preferably the first driving wheel should be near the middle of the girder, as in the figure. The moments and shears should be found at sections reasonably close together throughout the span. Therefore, divide the girder into any number of segments, say io, at intervals of 6 feet.

On the load line $m n$, lay off the loads and draw the force polygon $O m n$, with pole distance equal to 5 times the depth, or 30 feet, since, by using thus a multiple of the depth, the moment diagram is, by Art. 22, available for the measurement of flange stresses. Construct the corresponding equilibrium polygon acdefgb. Then, the bending moment at any one of the numbered sections of the girder will be given by the length of the ordinate immediately below it and between the closing line $a b$ and the perimeter $a \cdots e \cdots b$ of the equilibrium polygon, this length being measured by the proper moment scale (Art. 12).

Now, shift the span one interval to the right, as at $a_{1} b_{1}$; prolong the side $g b$; project a_{1} and b_{1} to $a_{1}{ }^{\prime}$ and $b_{1}{ }^{\prime}$, respectively, and draw the new closing line $a_{1}{ }^{\prime} b_{1}{ }^{\prime}$. This operation is, in effect, moving the system of loads a distance equal to one interval to the left on the span
as originally placed, and the equilibrium polygon for this new location is $a_{1}{ }^{\prime} \cdots e \cdots b_{1}{ }^{\prime}$. The bending moment at any section of the girder is then given by the length of the corresponding ordinate above that section (as marked on the line $a_{1} b_{1}$), and included between the perimeter and the closing line $a_{1}{ }^{\prime} b_{1}{ }^{\prime}$.

The span is then shifted successively to several new positions to the left, as $a_{2} b_{2}$, etc., each position differing from the one immediately preceding it by the space of one interval; and the corresponding equilibrium polygon is constructed in each case. This process is continued until every section, from the middle of the girder to the left abutment, has been subjected to its maximum bending moment. Each numbered section from I to 5, in the various locations of the span, is then projected upon the corresponding closing line of the equilibrium polygon, and a free curve, known as the stress curve, is drawn through the points thus determined. Thus, $C D$ and $E F$ are the stress curves for sections I and 2, respectively. The maximum bending moment at section I is evidently given by the length of the greatest ordinate included between the stress curve $C D$ and the perimeter $a \ldots e \ldots b$. The method for all other sections is similar.

The maximum moments thus obtained for the live load are plotted upward from the axis $G K$, for sections I to 5, giving points on the semi-curve of maximum moments $G L$; the full curve $G L K$ is symmetrical about its centre line $L M$, and is cusped at L, as shown.

The dead load, i.e., the total weight of one girder, of
one-half the lateral bracing and cross-framing, and of the floor system, may be taken, in this case, roughly, as about 600 pounds per linear foot of the span, or 18 tons for each girder. This load is considered to be uniformly distributed over the span, and the moments due to it are represented by the curve $G N K$, which is drawn, for convenience, below the axis $G K$, to the same moment scale as before. The maximum moment at any section, due to the dead and live loads, will then be given by the length of the corresponding ordinate included between the two curves. The curve $G N K$ is a parabola whose equation (Art. II) is :

$$
M=w s x / 2-w x^{2} / 2
$$

in which M is the bending moment in ton-feet at the section distant x feet from the left support, w is the uniform load in tons per lineal foot of the span, and s is the span in feet.
(b) Maximum Shears. It can be shown by computation or by measurement from the diagrams that the maximum live load shear at any section occurs when the first driving wheel is immediately above that section, the shear being then equal to the left reaction, less the load of 5.75 tons on the pilot wheel. The maximum shear can hence be found from a diagram similar to that in Fig. 28, by successively locating each section of the span below the first driver, constructing the corresponding equilibrium polygon, and then (Art. II) drawing a ray in the force polygon parallel to the closing line of the equilibrium polygon. The distance between the in-
tersection of this ray with the load line $m n$ and the point m will then be the left reaction for that position of the loads, and, deducting from this the first load of 5.75 tons

Fig. 29
on the pilot wheel, we have the maximum live load shear at the section immediately under the first driving wheel.

A more convenient method is shown in Fig 29. A new force polygon $O^{\prime} m^{\prime} n^{\prime}$ is constructed, having the pole O^{\prime} at a horizontal distance from m^{\prime} equal to the span.

Then, assuming the loads to be located as on the span $A^{\prime} B^{\prime}$, Fig. 28, the corresponding equilibrium polygon will be $a^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime} g^{\prime} b^{\prime}$. In the force polygon, draw the ray $O^{\prime} a^{\prime \prime}$ parallel to the closing line $b^{\prime} a^{\prime}$. Since the triangles $O^{\prime} m^{\prime} a^{\prime \prime}$ and $b^{\prime \prime} a^{\prime} b^{\prime}$ are equal in all respects, $b^{\prime} b^{\prime \prime}$ is equal to $a^{\prime \prime} m^{\prime}$, and hence to the left reaction for this position of the loads. This principle is general, applying to all other values of the left reaction, when found similarly.

Prolong the sides $g^{\prime} b^{\prime}$ and $a^{\prime} c^{\prime}$, and draw the indefinite line $p q$ parallel to $a^{\prime} c^{\prime}$, and at a vertical distance from it equal to the pilot load, 5.75 tons. Lay out the span with section 5 immediately below the first driving wheel; the ordinary y above the right end of the span is the left reaction for this position of the loads, and the ordinate y_{5} is the maximum live load shear at section 5 since the pilot load must be deducted. Similarly, y_{3} is the similar shear at section 3, and so on. When the first driver reaches the left support, its line of action coincides with that of the left reaction, and the pilot load is no longer on the girder. Hence, the side $c^{\prime} d^{\prime}$ is prolonged to $d^{\prime \prime}$, and the live load shear at section o is equal to the left reaction, and is represented by the ordinate y_{0}. In this method, it is assumed that the given sections - as 5,3 , and o - are successively located immediately below the first driving wheel, which is only approximately the position shown in Fig. 29, the latter position being, for comparison, the same as that in Fig. 28.

As stated previously, the live load shear is positive
when the load moves from right to left. Laying off these shears from the axis $P Q$ upward, $P Q R S$ becomes the diagram of live load shears from the left support to the middle of the girder. The total dead load on each girder is 18 tons. As this load is uniformly distributed, the dead load shear is one-half of it, or 9 tons, at the left support, and decreases uniformly to zero at the middle (Art. 8). This shear is also positive, but, for convenience, is laid off below the axis in the diagram $T P Q$. The final shear at any section is then represented by the corresponding ordinate in the combined diagram $S T Q R$. The diagram for the right half of the girder, and with the load moving from left to right, will be similar but reversed, corresponding sections having shears of the same magnitude, but both those due to dead and live loads being negative.
(c) Flange Stresses: Impact. By Art. in, the bending moment at any section of a beam is equal to the product of the corresponding ordinate in the equilibrium polygon by the pole distance H of the force polygon. By Art 22, the flange stress, which corresponds with the chord stress in a truss, is equal to the bending moment, divided by the depth of the truss or girder. In this case, the pole distance in the first force polygon was taken as 5 times this depth. Hence :

$$
\begin{gathered}
M=y \times H, \\
H=5 d, \\
A \times S=M / d=H y / d=5 y,
\end{gathered}
$$

in which M is the bending moment at the given section, y is the corresponding ordinate of the bending moment diagram, p is the depth of the girder, A is the total area
of either flange, and S is the flange stress, per square inch, at the given section. Hence, the moment diagram $G N K L$, Fig. 28, will serve as a total $(A \times S)$ flange stress diagram, if its ordinates be measured by a force scale 5 times greater than that used for the force polygon, i.e., if the scale of $0 m n$ be 20 tons to the inch, the flange stress scale will be roo tons to the inch. The unit stress at any given section of the web, due to the vertical shear, can be found by dividing the total shear, as given by the corresponding ordinate of the diagram $S T Q R$, Fig. 29, by the cross-sectional area of the web.

In bridges, the stresses, as determined above, are increased by an allowance for the impact resulting from the sudden application of the live load. Formulas for this allowance are given in works on this subject; the increase is usually about 70 per cent.
(d) Summary. Tabulating the results, as measured from the diagrams by the moment scale, we have, neglecting the allowance for impact:

SEction	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
Bending moment, dead load, ton-feet	0	48.6	86.4	113.4	129.6	135.
Maximum moment, live load, ton-feet	0	198.3	354.	498.5	558.	588.5
Total bending moment Vertical shear, dead	0	246.9	440.4	611.9	687.6	723.5
load, tons . . Maximum live load shear, tons . .	9	7.2	57.4	33.6	1.8	0
Vertical shear, total, tons	46.5	40.4	33.9	27.1	20.4	13.7

i6. Warren Girder for Overhead Crane: Maximum Stresses. Girders for overhead cranes are of several types. The rolled beam, the plate girder, the box girder, and the truss in different forms have each its place for this service. The selection depends mainly on the span and the maximum live load to be transported, although economy in weight and construction are primary requisites.

The upper diagram, Fig. 30, is the elevation in out-

Fig. 30
line of a Warren girder or truss with parallel chords, as employed in such cranes. In this girder, the web members are usually all diagonals and they are built to withstand both tension and compression; verticals may be inserted as struts between each joint of the lower chord and the middle of the panel above it, when the length of a panel is considerable. The crab, which carries the live load, has four wheels, tracking on the upper
chords of the two parallel girders. The conditions are thus, in general, the same as those of Example 15, except that the plate girder has been replaced, in this case, by the Warren truss. Let the girder, Fig. 30, be a 6 -panel, deck truss of 72 feet span and 6 feet in depth. Consider first :
(a) Dead Load Stresses. The dead load on each girder consists of the weight of one girder, its crossshafting, and platform. Take it as 6 tons and consider it as uniformly distributed over the girder. Then, as in the roof truss, Example 7, there will be a weight W $=I$ ton, acting at each of the inner joints of the upper chord, and a weight $W / 2=\frac{1}{2}$ ton, on each of the end joints. Since the load is uniformly distributed, the reactions R_{1} and R_{2} are equal and each is 3 tons.

Lay off the loads $a b, b c$, etc., on the load-line $a a^{\prime}$. Bisect this line at m. Then, $m a=R_{1}$ and $a^{\prime} m=R_{2}$. The closed force polygon for the loads and reactions is then $a b c d d^{\prime} c^{\prime} b^{\prime} a^{\prime} m a$. From m, draw the indefinite horizontal line $m l$.

Joint I is in equilibrium under the action of the reaction R_{1} and the load $W /{ }_{2}$, which are known, and the stresses in the members $B E$ and $E M$, which stresses are to be determined. From b and m lay off $b e$ and $m e$, parallel respectively to $B E$ and $E M$ and meeting at e. Then, taking the loads in clockwise order, the closed force polygon for the joint is abema. The stress be thus acts toward the joint and is therefore compressive, while em acts from it and is tensile.

At joint 2 there are acting the known stress $m e$ and
the stresses in $E F$ and $F M$, which are to be determined. From e and m, lay off ef and $m f$, parallel to their corresponding members and meeting at f. The force polygon is mefm, ef is compressive, and $f m$ is tensile.

In a similar way, the force polygon for joints 3 to 8 , inclusive, are drawn. Thus, for joint 3 , the polygon is $b c g f e b$; for joint 4, fghmf; etc. Since the load is uniformly distributed, the stress diagram is symmetrical about its axis $l m$. It will be seen that the diagonals,

Fig. 31
when under dead load, are alternately struts and ties, the order changing at the middle of the truss.
(b) Live Load Stresses. The maximum weight to be transported may be taken as 15 tons and the weight of the crab as 5 tons, which will bring a load of $20 / 4=5$ tons on each of the four wheels or runners of the crab. The distance between these runners, measured parallel to the girder, is 6 feet.

The graphic analysis of a truss is based on the assumption (Art. 5) that all loads are transferred to, and
concentrated at, the joints of the truss. Hence, if the centre of the crab be above joint 3,-as in the partial diagram, Fig. 3I, - each runner will be 3 feet from that joint and 9 feet from the joint on the other side of the runner. The load of 5 tons on each runner will then be divided in the proportion of 3 to I between the two adjacent joints. In the position shown, there will thus be a load $P=3.75 \times 2=7.5$ tons on joint 3 , a load $P_{1}=$ 1.25 tons on joint I, and a load $P_{2}=1.25$ tons on joint 5 . The crab and the weight transported thus form a symmetrical system of three loads spaced i2 feet apart.

The maximum stresses produced in the members of the truss by the travel of the crab and its load can be found by locating the system of loads centrally above panel-points 3,5 , and 7 , in succession, and taking, for each member, the greatest of the three stresses developed in it by these three locations of the system of loads. Since the crab may approach the middle of the girder from either end, it will be necessary to determine the stresses in one-half only of the members.

There are several ways of finding the changes in the stresses due to these changes in the location of the loads: first, the method of the equilibrium polygon can be employed, as in Example 15; second, the system can be located at each of the three panel-points in succession, and a separate stress diagram drawn for each case ; and, finally, a single stress diagram, for one load only at one panel-point, can be constructed, and the stresses due to the system at each of the three panel-points can be found by proportion from this stress diagram. This
method of multiples is essentially the use of the influence diagram in modified form. While possibly not the most convenient process in this case, it is given below for information.

Assume the central load $P=7.5$ tons to be the only one on the girder and to be located, as in Fig. 31, at panel-point 3. The reactions are: $R_{1}=6.25$ tons and $R_{2}=1.25$ tons. The closed force polygon for the loads and reactions is $b c m b$. The stress diagram is constructed by the same method as that used for the dead load diagram. The stresses thus determined for the web members are tabulated under 'panel-point 3' in Table i.

TABLE I

Web Member	Central Live Load P at Panel-point			
	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$
$M E$	+8.9	+7.1	+5.3	+3.6
$E F$	-8.9	-7.1	-5.3	-3.6
$F G$	$-\mathbf{1 . 8}$	+7.1	+5.3	+3.6
$G H$	$+\mathbf{1 . 8}$	-7.1	-5.3	-3.6
$H K$	$-\mathbf{1 . 8}$	-3.6	+5.3	+3.6
$K L$	+1.8	+3.6	-5.3	-3.6

The values given in the three remaining columns of the table are computed from those in the first column. The method is as follows:

The stress in a diagonal member is directly proportional to the vertical shear in the panel in which the
diagonal is located. Since there is but one load, the vertical shear is equal to the left reaction. When the load P is at panel-point $3, R_{1}=5 / 6 P$ and $R_{2}=\mathrm{I} / 6$ P; when P passes to panel-point $5, R_{1}=4 / 6 P$ and R_{2} $=2 / 6 P$. Hence, in the latter case, the stresses in all diagonals to the left of P are $4 / 5$ of those in the similar diagonals in the former case ; while, on the right of P, the multiple is 2 and the stresses are double those which prevailed previously in similar diagonals. With P at panel-point 7 , the multiples to left and right of P are, respectively, $3 / 5$ and 3 ; and so on. The signs of the stresses are determined by the fact that the two diagonals meeting at the panel-point where P is located are under compression, and that thereafter, both to left and right, the diagonals are alternately under tension and compression. As before, tensile stresses are considered as positive (+) and compressive stresses as

TABLE 2

Web Member	End Load P_{1} or P_{2} at Panel-point			
	3	5	7	9
ME	+ 1.5	+1.2	+ 0.9	+ 0.6
$E F$	- 1.5	- 1.2	-0.9	-0.6
$F G$	-0.3	+ 1.2	+ 0.9	+ 0.6
GH	+0.3	- 1.2	-0.9	-0.6
HK	-0.3	-0.6	+0.9	+ 0.6
$K L$	+0.3	+ 0.6	-0.9	-0.6

negative (-). The values above the heavy line in the table refer to members to the left of the load P.

The load $P_{1}=P_{2}=1.25$ tons is equal to $P / 6$. Hence, in the same location as P, it will develop stresses of the same kind and only one-sixth as large. Dividing the values in Table I by 6 , we have the stresses in Table 2 for either P_{1} or P_{2}, as it moves across the girder.

When the system of three loads is centrally above a panel-point, P is at the latter point and P_{1} and P_{2} are at adjacent panel-points to the left and right, respectively. Selecting the values for these conditions from Tables I and 2, we have, in Table 3, the live load

TABLE 3

Web Members	$M E$	$E F$	$F G$	GH	$H K$	$K L$
System at Panel-point 3:						
Load P_{1} at panel-point 1.	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Load P at panel-point 3 .	+ 8.9	-8.9	-1.8	+ 1.8	- 1.8	+ 1.8
Load P_{2} at panel-point 5.	+ 12	- 1.2	+1.2	- 1.2	-0.6	+ 1.6
Stresses due to system	+ 10.1	- IO.I	-0.6	+0.6	-2.4	+2.4
System at Panel-point 5:						
Load P_{1} at panel-point 3.	+ 1.5	- 1.5	-0.3	+0.3	-0.3	+0.3
Load P at panel-point 5 .	$+7.1$	-7.1	+ 7.1	-7.1	-3.6	+ 3.6
Load P_{2} at panel-point 7 .	+o9	-0.9	+0.9	-0.9	+0.9	-0.9
Stresses due to system	$+9.5$	-9.5	$+7.7$	-7.7	-3 .	+3.
System at Panel-point 7:						
Load P_{1} at panel-point 5 .	+ 1.2	- 1.2	+1.2	- I. 2	-0.6	+ 0.6
Load P at panel-point 7 .	+5.3	-5.3	+ 5.3	-5.3	+ 5.3	-5.3
Load P_{2} at panel-point 9 .	+ 0.6	-0.6	+0.6	-0.6	+ 0.6	-0.6
Stresses due to system	+7.1	-7.1	+ 7.1	-7.1	+ $5 \cdot 3$	-5.3

stresses in the web members for the three required positions of the system of loads.

Taking the maximum and minimum live load stresses from Table 3 and combining them with the dead load stresses, as measured from the stress diagram, Fig. 30, we have, in Table 4, the maximum stresses in the

TABLE 4

Web Members	Stress Range, Live Load	Dead Load Stresses	Maximum Stresses
ME	+7.1 to +10.1	$+3.6$	+ 13.7
EF	-7.1 to - 10.1	-3.6	-13.7
$F G$	-0.6 to +7.7	+ 2.2	+ 9.9
GH	+ 0.6 to - 7.7	- 2.2	- 9.9
HK	-2.4 to +5.3	$+0.7$	+ 6.
$K L$	+2.4 to -5.3	-0.7	- 6.

web members, as the crab, carrying its live load, travels from the end to the middle of the girder.
17. Pratt Truss: Uniform Live Load. The magnitudes of the stresses in the members of a bridge truss, due to dead loads and to uniform live loads, can be determined by stress diagrams, as with a roof truss and with the Warren truss, Fig. 30; these stresses can be found also by the general method of the force and equilibrium polygon. The use of the latter is illustrated in Fig. 32, which represents a Pratt truss, through type, of six panels, having a span of 144 feet and a depth of 24 feet. Let the uniform live load
crossing the bridge be a train weighing 4000 pounds per lineal foot. One-half of this load will be carried by each of the two trusses forming a single-track railway, as in this case. This gives a load of 4000/2 $=2000$ pounds $=1$ ton per lineal foot of span, or a panel load of 24 tons.

FIG. 32.
Each of the inner panel-points, 3, 5, 7, 9, and II, carries this load; the end points, I and I_{3}, have each a half panel load, or 12 tons. As the total load is uniformly distributed, the two reactions will be equal. The total reaction at the left support is $24 \times 6 / 2=72$ tons; deducting the half panel load at point I, the effective reaction is 60 tons.

To any convenient scale, lay off the loads and effective reactions on the load line $b b^{\prime}$, and, taking the pole distance H as a multiple of the depth of the truss, draw the force polygon $O b b^{\prime}$ and the corresponding equilib-
rium polygon $K L M$, which polygon is the bending moment diagram for the truss.

Since the vertical shear V is equal to the left reaction, minus any loads to the left of the section considered, the shear diagram efg , with zero line $h k$, can be drawn, as shown, by projection from the lower chord of the truss and from the load line of the force polygon. Thus, in the first panel, $V=R_{1}=a b$; in the second panel, $V=R_{1}-\operatorname{load} B C=a b-b c=a c$; etc.
(a) Chord Stresses. By Art. 22, the total stress in either chord at any given section of the truss is equal to the bending moment at that section, divided by the depth of the truss. In this case, as in Example 15, the pole distance is a multiple of the depth of the truss. Hence, by using a stress scale proportioned for these conditions, the chord stress at any given section can be measured directly from the moment diagram $K L M$. Thus, at the middle of the second panel, the total stress in either chord is 78 tons; at the middle of the third panel, IO2 tons; etc. These stresses are compressive in the upper chord and tensile in the lower.
(b) Stresses in Diagonals. By Art. 22, the vertical component of the stress in any diagonal member of a truss with parallel chords is equal to the vertical shear in the panel in which the diagonal is located. Thus, $a^{\prime \prime} c^{\prime \prime}=36$ tons is the vertical shear in the second panel and is also the vertical component of $c^{\prime \prime} a^{\prime \prime}$, drawn parallel to the diagonal $2-5$. The length of $c^{\prime \prime} d^{\prime \prime}$, measured by the same scale, is 51.4 tons, which is the stress in the diagonal $2-5$.
(c) Stresses in Verticals. By Art. 22, the stress in the vertical member of a truss with parallel chords is equal to the vertical component of the stress in the diagonal which meets the vertical at a panel-point in the unloaded chord, and is hence equal to the vertical shear in the panel in which that diagonal is located. Thus, the stress in the vertical at panel-point 3 is equal to the vertical shear in the second panel, or 36 tons, etc. The stress in the central vertical at panel-point 7 is equal to the algebraic sum of the shears in the two adjacent panels, or zero in this case.
(d) Character of the Stresses. The character of the stresses, as to tension or compression, cannot be determined from the equilibrium polygon, but must be ascertained from other considerations. Thus, in any truss the upper chord is in compression and the lower in tension. Again, the positive or negative character of the vertical shear in any panel is known, and, using the method shown in Fig. 25, the nature of the stresses in the diagonals and verticals, respectively in and adjacent to that panel, can be found. In the Pratt truss, the stresses in all verticals are compressive and those in all diagonals in action are tensile; in the Howe truss, the main diagonals have the opposite inclination, and, as the character of the vertical shear is the same, the stresses in the web members are the reverse of those in the Pratt truss. In both trusses, one or more panels at the middle are counterbraced (Art. 19) to provide for the reversal of shear when concentrated loads cross the bridge.
(e) Concentrated Loads. The graphic analysis of the live load stresses, due to a series of concentrated loads, in this and similar trusses, can be made most conveniently by the use of the force and equilibrium polygons, as in Example I5. The method, while essentially simple, would require more space than is available here, for description in detail. In outline it is as follows :

For convenience in investigation, a tentative truss diagram is drawn with the diagonals all inclined in one way - that of the members, $2-5$ and $4-7$, Fig. 32. This uniform inclination does not alter the magnitude of the stress in any diagonal; it simply changes, from tension to compression, the stresses in those members which will have the opposite inclination in the truss as built. Let the series of concentrated loads be those of two coupled locomotives followed by a train, all moving from right to left. Proceeding as in Example 15, the stress curves are drawn and the maximum shear found, both for half-panel intervals from. the left abutment to the middle of the truss. From the stress curves, the diagram for maximum bending moments and chord stress can be drawn; from the maximum shears, the diagram for the latter can be constructed and the stresses in the diagonals determined, as in the shear diagram, Fig. 32. The stresses in the verticals are, in general, equal to the vertical shear in the panel to the right of it.

The stresses, as thus found, are tabulated with those due to dead load, in order to determine the maximum stress in each member and to ascertain which panels require counterbracing, owing to a reversal of stress in the diagonals.

CHAPTER V

CENTRE OF GRAVITY : MOMENT OF INERTIA

In engineering calculations, the location of the centre of gravity of a plane area is frequently required; for example, through this point the neutral axis of the cross-section of a beam passes. Similarly, the magnitude of the rectangular moment of inertia, about an axis through the centre of gravity of the cross-section, as above, must be known, in order to determine the stresses due to bending at that section of the beam. The centre of gravity and the moment of inertia of plane areas can both be found graphically by the methods given below.
23. Centre of Gravity. The weight of a body is the result of the action of terrestrial gravitation upon the latter. A body is composed of an indefinite number of indefinitely small particles; the earth attracts each of the latter with a force proportionate to the mass of the particle. These forces of attraction thus form, for each body, a system whose components are vertical and virtually parallel, since the centre of mass of the earth is 4000 miles distant and each particle is indefinitely near those adjacent to it.

The resultant force of this system is the weight of the body, and the line of action of this resultant passes
through the centre of gravity or mass-centre of the body. In treating areas which have no mass, it is assumed that the force of gravity acting on the area is proportional to the magnitude of the latter, i.e., that there is

an equal force applied to the centre of each unit of area, as if the latter were that of a thin plate.
24. Centroid of Two Parallel Forces. The centre of gravity is virtually the centroid or centre of a system of parallel forces. In Fig. 33, let P_{1} and P_{2} be two parallel forces acting from the points of application A and B, respectively. Draw the force polygon Oac and
the equilibrium polygon $A D E$; the resultant $R=P_{1}$ $+P_{2}$ acts on the line $G D$ dividing the line $A B$ into segments, $A G$ and $B G$, which are inversely as the forces applied at A and B, respectively. That $G D$ is the line of action of R follows from the fact that $R=a c$, and hence the intersection of the sides $A D$ and $E D$, drawn parallel to the rays $O a$ and $O c$, must lie at D on a point in the line of action of R; this determines that line, since it must also be parallel to the lines of action of P_{1} and P_{2}.

Now, revolve the forces P_{1} and P_{2} about their points of application, forming the system of parallel forces $P_{1}{ }^{\prime}$ and P_{2}^{\prime}, whose force and equilibrium polygons are $O^{\prime} a^{\prime} c^{\prime}$ and $A^{\prime} D^{\prime} E^{\prime}$, respectively. The line of action of the resultant R^{\prime} of this new system acts on the line $G D^{\prime}$ which, as before, intersects $A B$ at G. With the same relative locations of the poles O and O^{\prime}, the construction of the force polygon $O^{\prime} a^{\prime} c^{\prime}$ is unnecessary, since the sides of the equilibrium polygon $A^{\prime} D^{\prime} E^{\prime}$ are at the same angle with the corresponding sides of the polygon $A D E$ as that through which the forces were revolved.

It is evident that, at whatever angle the forces be inclined, if they remain parallel, the line of action of their resultant will pass through the point G, which is hence the point of application of that resultant. This point is called the centre of parallel forces or the centroid. In Fig. 33, the forces have the same direction. If they act in opposite directions and are still unequal in magnitude, their resultant will be equal to their algebraic
sum and will act on a line parallel to their lines of action and meeting $A B$ prolonged at a point corresponding with G in Fig. 33. If the forces are equal in magnitude and opposite in direction, they form a couple whose centroid is infinitely distant from the points of application of the forces and on a line drawn through these points.
25. Centroid of Complanar Parallel Forces whose Points of Application are Complanar with all of the Forces, but are not in a Straight Line. These are the conditions which exist in the graphical determination of the centre of gravity of an area. It is evident that, so long as the points of application of parallel forces are in the same straight line, the centroid of the system will lie at the intersection of the line of action of the resultant with that line, whatever may be the number or relative direction of the forces. When, however, the points of application, although in the same plane, do not lie in the same straight line, the method shown in Fig. 33, i.e., the intersection of the lines of action of resultants, can be used for complanar forces in determining the centroid of the system.

In Fig. 34, let $P_{1} \ldots P_{4}$ be a system of parallel forces having the points of application A, B, C, and D, respectively, these points and the lines of action being in the same plane. Draw the force and equilibrium polygons, Oae and EBFLH, respectively; the resultant R acts on the line $R H K$. Revolve the forces about their points of application, keeping the lines of action still in their original plane. The system, $P_{1}{ }^{\prime} \cdots P_{4}^{\prime}$, is thus
formed, having the equilibrium polygon $E^{\prime} B^{\prime} F^{\prime} L^{\prime} H^{\prime}$. The line of action of the resultant R^{\prime} of this system

intersects the line of action of the resultant R at the point G, which point is the centroid of the system.

The intersection of the lines of action of resultants is thus the general method of finding the centre of gravity of an area by the force and equilibrium polygons, the area, if possible, being first divided into segments of geometrical form whose areas and the locations of whose centres of gravity are known. Then, by applying at each of these centres of gravity a force proportional to its corresponding area, the system of parallel forces, shown in Fig. 34, is established.

If the area whose centre of gravity is required is of irregular shape and incapable of division into segments of geometrical form, its centre of gravity may be located, in close approximation, by drawing a series of vertical lines, closely and uniformly spaced, which divide the area into strips so narrow that the centre line of each space may be regarded as the length of that strip. At the centre of gravity of each strip, i.e., the middle point of its centre line, apply a vertical force proportional to the area of the strip, that is, to the length of its centre line, since the strips are uniform in width. Proceeding as in Fig. 34, the centroid of this system of parallel forces, which is the centre of gravity of the area, can be found.

26. Moment of Inertia: Radius of Gyration. (a) Mo-

 ment of Inertia. If a force of magnitude P act at a perpendicular distance l from a given point, its moment about that point is $P \times l$. As has been stated previously, moments can be treated like forces in graphic processes. Hence, if, on the original line of action, the moment $P \times l$ be assumed to act, its moment about that point will be $P l \times l=P l^{2}$, which is the rectangular momentof inertia I of the force P about that point. The moment of inertia is, therefore, the moment of the first moment, or the second moment.

Again, if a particle of mass m be rotating with an angular velocity v, in a plane about a point lying in that plane and at a distance r from the particle, the angular momentum of the particle will be $m v r^{2}$, and that of all the particles composing the body will be $v \Sigma m r^{2}$. The expression $\Sigma m r^{2}=I$ is the sum of the second moments or moments of inertia of the particles, m being the quotient of W, the weight, divided by g, the acceleration of gravity. Since, in the mechanics of engineering, force is taken as the product of mass by acceleration, this term may be used to describe the second moment of a force or system of forces about an axis; as an area, however, is not a material body, the term is applicable strictly to it only on the assumption that each element of area has a mass proportional to its area, as if the given figure were a thin plate.

In the expression for I, as given above, the radius r evidently differs for each particle considered. Hence, the moment of inertia of a body is the summation of the products of the masses of the elements of the body by the squares of their respective distances from the axis of inertia about which the body is assumed to rotate. Similarly, the moment of inertic of a force about such an axis is the product of the square of the distance between the point of application of the force and the axis, by the magnitude of the force; and the moment of inertia of a system of parallel forces is the sum of these products.

The moment of inertia of an area is, in the same way, the summation of the products of each elementary area, considered as a mass, by the square of its distance from the axis of inertia.
(b) Radius of Gyration. The radius of gyration is the perpendicular distance from the axis of inertia to the centre of gyration. For a body, the centre of gyration is the point at which, if the entire mass of the body were concentrated in a single particle, the effect of the forces acting on the body would be unchanged and the moment of inertia of the body would remain the same. The centre of gyration of a body has not an unchangeable location. Its position may be taken as that of any point in the body which, under the conditions then existing, is at a distance from the axis equal to the radius of gyration; with any variation in the virtual centre about which the body revolves, that radius changes also and with it the location of the centre of gyration.

If we assume the entire mass of the body to be concentrated at the centre of gyration, at a distance $k=$ the radius of gyration from the axis, then the moment of inertia of the body about that axis is:

$$
I=\Sigma m r^{2}=k^{2} \Sigma m
$$

Hence:

$$
k^{2}=I / \Sigma m,
$$

i.e., the square of the radius of gyration is equal to the moment of inertia of the body divided by its mass. Similarly, the square of the radius of gyration of a system of parallel forces is equal to the moment of inertia of the system, divided by the magnitude of the resultant R of
the system, or $k^{2}=I / R$. For an area A, by similar reasoning, $k^{2}=I / A$.
27. Moment of Inertia of a System of Complanar Parallel Forces. It can be shown, by similar triangles, that the moment of a force about a given point is equal to the product of the pole distance of that force by the intercept which is cut from the line drawn through the given point and parallel to the line of action of the force,

FIG. 35
when the two sides of the equilibrium polygon which intersect on the line of action of the force are prolonged. This principle furnishes one method of finding the moment of inertia of a system of parallel forces. A second, and in some respects more convenient, method, that by the area of the equilibrium polygon, is given below.

In Fig. 35, let $P_{1} \cdots P_{3}$ be a system of complanar parallel forces, acting from the points of application, A, B, and C, respectively. Draw the force polygon $a \cdots d$,
with pole distance H, and the corresponding equilibrium polygon $D E F G$. The resultant $R=a d$, and its line of action, the axis $M m$, passes through the point G, and hence through the centroid of the system. For any of the forces, the sides of the polygon which intersect on its line of action and the intercept of these sides on the axis form a triangle, as $F G N$ for the force P_{3}, to which there is a similar triangle, as $O c d$, in the force polygon. Let l_{3} be the distance between the line of action of P_{3} and the axis Mm . Then:

$$
c d: G N:: H: l_{3} .
$$

Since $c d=P_{3}$:

$$
P_{3} l_{3}=H \times G N .
$$

Multiplying by l_{3} :

$$
P_{3} l_{3}=2 H\left(G N \times l_{3} / 2\right) .
$$

$P_{3} l_{3}$ is the moment of inertia I for the force P_{3} about the central axis $M m$, and $G N \times l_{3} / 2$ is the area of the triangle $F G N$. By similar reasoning :
$2 H \times$ area of triangle $D G Q=I$ for P_{1},
$2 H \times$ area of triangle $E N Q=I$ for P_{2}.
The triangular areas :

$$
D G Q+E N Q+F G N=\text { polygonal area } D E F G
$$

Let the area of the equilibrium polygon $=A^{\prime}$. Then:

$$
A^{\prime} \times 2 H=I \text { for }\left(P_{1}+P_{2}+P_{3}\right)=I \text { for } R ;
$$

and for the system. If H be made equal to $R / 2$:

$$
I=A^{\prime} R,
$$

and the square of the radius of gyration is:

$$
k^{2}=A^{\prime} .
$$

In Fig. 35, the forces P_{1}, P_{2}, and P_{3} have all the same direction. If one of them, as P_{2}, had a direction
opposite to that of the other two forces, its moment and the corresponding triangular area would have the opposite sign, and the area A^{\prime} of the equilibrium polygon would then be equal to the algebraic sum of the three triangular areas.
28. Parallel Axes of Inertia, One passing through the Centroid. From Art. 27, it will be seen that the moment of inertia of a system of forces about an axis passing through the centroid and parallel to the lines of action of the forces, is the sum of the moments of inertia about that axis of the forces between whose lines of action the axis lies. This principle is general, not only with regard to an area and a body, but also for any given axis parallel to that passing through the centrode. The relation between the moments of inertia about two such parallel axes can be found by either the method of intercepts or that of the area of the equilibrium polygon. The latter method is as follows:

In Fig. 35, let $M^{\prime} m^{\prime}$ be any given axis, paralled to the axis $M m$ through the centroid, and let l_{1} be the distance of the line of action of the force P_{1} from the axis $M^{\prime} m^{\prime}$. The triangles $D a^{\prime} b^{\prime}$ and $O a b$ are similar. Hence:

$$
\begin{aligned}
a b: a^{\prime} b^{\prime} & :: H: l_{1}, \\
P_{1} \times l_{1} & =H \times a^{\prime} b^{\prime}, \\
P_{1} l_{1}{ }^{2} & =2 H\left(a^{\prime} b^{\prime} \times l_{1} / 2\right) \\
& =\text { moment of inertia of } P_{1} \text { about } M^{\prime} m^{\prime} \\
& =I^{\prime} \text { for force } P_{1} .
\end{aligned}
$$

Hence, I^{\prime} for the force P_{1} is equal to $2 H \times$ area of triangle $D a^{\prime} b^{\prime}$. Similarly:

$$
\begin{aligned}
& I^{\prime} \text { for force } P_{2}=2 H \times \text { triangular area } E b^{\prime} c^{\prime}, \\
& I^{\prime} \text { for force } P_{3}=2 H \times \text { triangular area } F c^{\prime} d^{\prime} .
\end{aligned}
$$

As before, let the area of the equilibrium polygon $=A^{\prime}$ and that of the triangle $G a^{\prime} d^{\prime}=A^{\prime \prime}$. Then, the moment of inertia of the system is:

$$
\begin{aligned}
I^{\prime} & =2 H \times \text { polygonal area } D E F G d^{\prime} a^{\prime} \\
& =2 H\left(A^{\prime}+A^{\prime \prime}\right) .
\end{aligned}
$$

If H be made equal to one-half the resultant R of the system :

$$
I^{\prime}=R\left(A^{\prime}+A^{\prime \prime}\right),
$$

and the square of the radius of gyration is:

$$
k^{2}=A^{\prime}+A^{\prime \prime} .
$$

Hence, for an axis passing through the centroid, the moment of inertia is equal to the product of the resultant R by the area of the equilibrium polygon, if the pole distance H be made equal in magnitude to onehalf of that resultant. For a parallel axis, the magnitude of this moment is increased by the product of the resultant by the triangular area formed by the sides intersecting on the line of action of the resultant and the intercept of those sides on the given axis. For a body of mass M or a cross-section of area A, the resultant R, as above, is replaced by M or A, respectively.
29. Moment of Inertia of an Area. - While the general principles established in Arts. 27 and 28 are applicable fully to areas, the determination, with absolute accuracy, of the moment of inertia of a plane area by the methods there given is impossible, since such an area consists of an indefinitely large number of elements of area, and the corresponding system of parallel
forces would therefore be composed of an indefinitely large number of forces, thus making graphic methods unavailable.
(a) Approximate Determination. - A working approximation, which will serve in most cases in practice, may be made by first determining the centre of gravity of the given area; then dividing the latter into a number of narrow strips parallel to a complanar axis passing through the centre of gravity; and finally applying at the centre of gravity of each strip a force proportional to its area, the whole forming a system of complanar, parallel forces which can be treated by the methods of Art. 27. The greater the number of these strips, and hence the less their width, the nearer the approximation approaches accuracy. With an infinite number of such forces, it is evident that the upper sides $D E F$ of the equilibrium polygon, Fig. 35, would be replaced by a curve tangent to the lower sides $D G$ and $F G$. In practice, if the given area be divided into a reasonably large number of strips as explained, this curve can be drawn with sufficient accuracy, and the area A^{\prime} of the equilibrium polygon can then be measured by the planimeter or in other ways.
(b) Accurate Determination. Both the method of intercepts and that of the area of the equilibrium polygon, as given in Arts. 27 and 28, are applicable in determining, with entire accuracy, the moment of inertia of an area, when the latter can be divided into sections, the area of each of which and its moment of inertia with respect to an axis passing through its centre of gravity
are known. In this case, the force representing the area of the section is applied, not at the centre of gravity of the latter, but at a distance from the given axis of inertia which is equal to the radius of gyration of the area of the section about that axis.

In using this method, a further relation existing between the moments of inertia about parallel axes of inertia may be employed. Thus, let I be the moment of inertia of a system of parallel forces about an axis Mm passing through the centrode of the system, let $M^{\prime} m^{\prime}$ be any axis parallel to $M m$ and at a distance L therefrom, and let I^{\prime} be the moment of inertia of the system about the new axis of inertia $M^{\prime} m^{\prime}$. Then, it can be shown mathematically that:

$$
\begin{array}{ll}
\text { for parallel forces, } & I^{\prime}=I+R L^{2} \\
\text { for a body, } & I^{\prime}=I+M L^{2} \\
\text { for an area, } & I^{\prime}=I+A L^{2}
\end{array}
$$

R, M, and A being the resultant of the forces, the total mass of the body, and the total area, respectively.

Again, let a be the area of any one of the sections into which the total area is divided, k its radius of gyration about the axis Mm passing through the centre of gravity, k_{1} its radius of gyration about the given axis of inertia $M^{\prime} m^{\prime}$, and L the distance between the two axes. Then (Art. 26):

$$
\begin{aligned}
I & =a k^{2}, k^{2}=I / a \\
I^{\prime} & =I+a L^{2}=a k_{1}^{2} \\
k_{1}^{2} & =I a^{2}+L^{2}=k^{2}+L^{2}
\end{aligned}
$$

The required radius of gyration is therefore the hy-
pothenuse of a right-angled triangle whose sides are k and L, the magnitudes of which are known. The force corresponding with the sectional area a is then assumed to act at a distance k_{1} from the axis of inertia and to be parallel to that axis. If the total area can thus be divided into geometrical figures to which this principle can be applied, either the method of intercepts or that of the area of the equilibrium polygon can be used, with entire accuracy, for the determination of the moment of inertia of a plane area.

EXAMPLES

18. Centroid of Parallel Forces due to Locomotive Wheel Loads. Let it be required to find the centroid of the forces due to the locomotive wheel loads in Example 15, viz. 5.75 tons on the pilot wheel and 10.94 tons on each of the four drivers. The load-spacing, from left to right, is : $100,66,66$, and 72 inches.

If it be assumed that these loads are held in equilibrium by an upward force P equal to their sum, we shall have a system in equilibrium which can be treated by the general method. In Fig. 36 lay off the five loads on the span segment $A A^{\prime}$ and on the load line $a b$; then $b a=P$. Draw the force polygon $O a b$ and the corresponding equilibrium polygon $B C D E F G$. The vertical line $M m$, passing through the point G, is then the line of action of the force P and also of the resultant R of the forces, which resultant is equal and opposite to P and acts through the centroid of the system. This centroid is located at a point on the line Mm prolonged,
whose location depends on the diameters of the pilot and driving wheels. Thus, the point of application of the resultant of the forces on the four driving wheels lies on the line of centres of these wheels. If a line be drawn from this point to the centre of the pilot wheel, the intersection of this line with the line Mm prolonged will be the centroid of the system, or the point of application of the resultant R. The centroid thus lies about $I O$ inches to the right of the centre of the second driving wheel.

Fig. 36
19. Centre of Gravity of Bulb Angle. When a cross-section has an axis of symmetry, its centre of gravity will lie on that axis, and but one equilibrium polygon need be constructed. The bulb angle shown in Fig. 37 is not thus symmetrical, and hence equilibrium polygons must be drawn for two directions of the forces.

The dimensions of the angle are : total depth, 6 inches; width of flange, 3 inches; thickness of web, $\frac{1}{2}$ inch; of flange, tapering from $\frac{1}{2}$ inch to $\frac{7}{16}$ inch; curves of bulb, $\frac{1}{2}$ inch radius; of flange, $\frac{5}{16}$ inch radius.

For graphical analysis, the cross-section is divided into sections, whose areas in square inches are: $a b c$, 0.12; bcde, 1.02; dhkl, 2.75 ; efg, 0.02 ; klo, 0.2 ; pqr, 0.05 ; prso, 0.5 ; rst, 0.4. The total area of the crosssection is thus 5.06 square inches.

At the centre of gravity of each of these sections

FIG. 37
there is assumed to be applied a force equal to the area of that section. The centre of gravity of a rectangle lies at the intersection of the diagonals; of a triangle, on a line drawn from any vertex to the middle of the opposite side, and at a distance from the vertex equal to two-thirds the length of this line; of a circular sector, on its middle radius at a distance from the centre of the circle equal to $2 R C / 3 A$, in which R is the radius, C is
the length of the chord of the arc, and A is the length of the arc. For a 90 -degree sector, $A=2 \pi R / 4$. The centre of gravity of a trapezoid can be found by dividing it into two triangles and connecting their centres of gravity. The latter, for the trapezoid, will lie on this connecting line, dividing it into segments inversely proportional to the areas of the two triangles so that the algebraic sum of their moments about it shall be zero.

In Fig. 37, the forces are first assumed to act downward and to the left. The centre of gravity of each section is located and a force equal to the area of the section is laid off on the load line $m n$. Assuming equilibrium as in Example 18, the force and equilibrium polygons $O m n$ and $A B C D$ are drawn. The resultant R of the forces acts on the line $D G$. The forces are now revolved through 90 degrees, and the force and equilibrium polygons $O^{\prime} m^{\prime} n^{\prime}$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are similarly constructed. The line of action of the new resultant R^{\prime} is $G D^{\prime}$. The two lines of action meet at G, which is the centre of gravity of the bulb angle. The point G is vertically distant 2.86 inches from the face of the flange and 3.14 inches from the base of the bulb.
20. Centre of Gravity of a Partial Area. The area of a perforated plate is its total area, less the combined areas of the perforations. In determining the centre of gravity of such a plate, the area of each perforation must evidently be treated as an upward, opposing force, in order to consider the deductions as above.

Thus, Fig. 38, let it be required to determine the
centre of gravity of the partial area, $A B C D E F$, which area is equal to that of the rectangle $A D E F$, less those

Fig. 3^{8} of the triangle $A B C$ and the circle $g_{2} K$. At the centres of gravity g_{1}, g_{2}, g_{3} of these three figures, apply parallel forces P_{1}, P_{2}, and P_{3} respectively proportional to the areas, the forces corresponding with the two deducted areas being assumed to act in the opposite direction from P_{1}, which represents the area of the rectangle. Draw the force polygon and the equilibrium polygons, $L M N S$ and $L^{\prime} M^{\prime} N^{\prime} S^{\prime}$, for two directions of the system of forces. The resultants R and R^{\prime} intersect at the point G, which is the centroid of the system and the centre of gravity of the partial area, $A B C D E F$.
21. Moment of Inertia of the Cross-section of a Deck Beam: Approximate Method. - Figure 39 represents the cross-section of a deck beam. It is required to determine the moment of inertia of this crosssection, about an axis passing through the centre of gravity of the cross-section and perpendicular to the web, using the approximate method of Art. 29.

The dimensions are : depth of beam, 6 inches; width
of flange, $4 \frac{3}{8}$ inches; thickness of web, $\frac{9}{32}$ inches; of flange, $\frac{1}{3} \frac{7}{2}$ tapering to $\frac{7}{32}$ inches; depth of bulb, $1 \frac{1}{16}$ inches; thickness, $\mathrm{I} \frac{11}{3}$ inches; area of cross-section, 4.I square inches.

For the reasons stated in Art. 29, the cross-section is divided into a number of relatively narrow vertical

Fig. 39
strips, and the area and centre of gravity of each strip are found. It is assumed that, at each of these centres of gravity, there is applied a force equal to the area of that section, the whole constituting a system of vertical parallel forces, whose resultant $R=A=4$. I square inches, the area of the cross-section. Assuming equilib-
rium (Example 18), the force and equilibrium polygons Omn and $B C D E$ are drawn. Since the crosssection is symmetrical about its central axis, the centre of gravity lies on this axis, the line of action of the resultant R is $G E$, parallel to those of the forces, and G is the centrode of the system of forces and the center of gravity of the cross-section.

By Art. 27, the moment of inertia of the cross-section about the axis $G E$ is $I=R A^{\prime}=A A^{\prime}$, in which A^{\prime} is the area of the equilibrium polygon. It is evident that, with the construction shown in Fig. 39, the area A^{\prime}, as measured from the drawing, must be an approximation only to the true area. This approximation becomes closer as the width of the strips is decreased, until, when that width is indefinitely small, the broken line $B C D$ becomes a curve which is tangent to the lines $E B$ and $E D$, prolonged, at the points b and d, vertically below the ends of the cross-section. With the approximate construction as in Fig. 39, the measured area is thus greater than the true area, since the sides of the polygon form chords of the true curve. In this case, a full-scale drawing, made with fair accuracy, gave an area, measured by planimeter, of $A^{\prime}=5.34$ square inches, from which $I=4.1 \times 5.34=21.89$, as against the value 2 r .6 stated in the manufacturer's handbook and obtained from an area bounded by the true curve.
22. Accurate Determination of the Moment of Inertia of an Area about an Axis passing through its Centre of Gravity. - Let it be required to determine accurately, by the methods of Art. 29, the
moment of inertia of the geometrical figure shown in Fig. 40, about an axis passing through its centre of gravity. This figure is composed of two rectangles and a triangle, whose areas, beginning at the left, are: a_{1} $=1.25, \quad a_{2}=1.5$, $a_{3}=0.56$ square inches. The total area is therefore $A=3.3 \mathrm{I}$ square inches. By constructing the force polygon $O p q$, with pole distance $A / 2$, and the corresponding equilib-

Fig. 40 rium polygon (not shown), the centre of gravity G of the figure is located.

For an accurate determination, the force representing an area should be applied (Art. 29) at a distance from the given axis of inertia equal to the radius of gyration of this force about that axis. Further, it has been shown (Art. 29) that, if k_{1} be the radius of gyration of an area about an axis passing through its centre of gravity, K_{1} the similar radius about a parallel axis, and l_{1} the distance between the two axes, then $K_{1}{ }^{2}=k_{1}{ }^{2}+l_{1}{ }^{2}$.

In this case, the given axis of inertia is $M^{\prime} m^{\prime}$ passing through the point G. Applying the principles as above to the area a_{1}, draw, from any point c in the axis $M^{\prime} m^{\prime}$, a horizontal line intersecting at b the line of action $g b$ which passes through the centre of gravity of a_{1}, and, from b, erect $b b^{\prime}=k_{1}$, the radius of gyration of a_{1} about the axis $g b$. Then, $c b=l_{1}$ and $c b^{\prime}=\sqrt{k_{1}{ }^{2}+l_{1}{ }^{2}}$ $=K_{1}$, the radius of gyration of the area a_{1} about the axis $M^{\prime} m^{\prime}$. Revolving $c b^{\prime}$ to $c b^{\prime \prime}$, we have the new line of action $b^{\prime \prime} B$ of the force corresponding with the area a_{1}, which line of action lies to the left of the original line.

In the same way, the new lines of action $d D$ and $e E$, for the forces corresponding with the areas a_{2} and a_{3}, respectively, are determined. The values of k_{1}, k_{2}, and k_{3} are found analytically. Thus, the radius of gyration of a rectangle about an axis passing through its centre of gravity and perpendicular to the base, is equal to the length of the base, divided by the square root of 12; the similar radius for a triangle about an axis parallel to the base, is equal to the altitude, divided by $\sqrt{18}$. Hence, $k_{1}=0.14, k_{2}=0.87$, and $k_{3}=0.18$. For clearness, k_{1} and k_{3} are exaggerated in Figure 40.

While the forces have thus new lines of action, they have still the same magnitudes, and hence the original force polygon $O p q$ will serve. Constructing the corresponding equilibrium polygon $B D E F$, the line of action of the resultant $R=A$ is found to be $M m$ passing through the point F. The problem is thus reduced to the case analyzed in Art. 28 and Fig. 35, viz. there are
two parallel axes of inertia $M m$ and $M^{\prime} m^{\prime}$, the former passing through the centrode of the system; the moment of inertia of this system about the axis $M^{\prime} m^{\prime}$ is therefore $I^{\prime}=A\left(A^{\prime}+A^{\prime \prime}\right)$, or the product of the area of the cross-section by the area of the polygon $B D E F$, plus that of the triangle $F J L$, formed by the intersection of the sides $B F$ and $E F$ and the intercept cut by those sides from the axis $M^{\prime} m^{\prime}$. Substituting the value of the area A and those of the two latter areas, as measured from the diagram, $I^{\prime}=6.55$.

CHAPTER VI

FRICTION

The resistance due to friction is both helpful and hurtful in the performance of mechanical work. It is friction which gives the driving wheels of a locomotive the grip on the rails which enables them to move the train ; and, again, it is the friction of the car wheels on the track which, disregarding the resistance of the air, forms the total work of pulling the train and develops the total stress in the draw-bar. The analysis of the action of friction is, in some cases, complex, but it is often simplified materially by the use of graphic methods.
30. Friction. The sliding friction of solids - which only will be treated herein - is the resistance to relative motion of surfaces in contact and under pressure. This resistance is caused by the interlocking of the minute projections and indentations of these surfaces. If the latter were absolutely smooth and perfectly hard, there would be no projections to disengage and override, no frictional resistance would occur, and hence no mechanical work would be required to produce relative motion. In practice, the action of pure friction, as above, is complicated by adhesion, abrasion, the viscosity of lubricants, etc.

Sliding friction is the friction of plane surfaces; the friction of warped surfaces, such as screw threads, and of cylindrical surfaces, such as journals, is a modified form of this action. Rolling friction is the friction of a curved body, as a cylinder or sphere, when moving over a plane surface or one of greater curvature. In this case, contact occurs theoretically on a line or point only; but, as all materials are more or less elastic, there is actually a surface of contact, and therefore rolling friction is identical in cause with sliding friction. The resistance or 'force' of friction acts in the plane of contact of plane surfaces, and, with curved surfaces, along their common tangent. In most mechanisms, the friction of motion only is encountered; with belting, the friction of rest occurs. The latter is greater theoretically than the former since, during rest, the harder body has better opportunity to indent and engage the softer surface with which it is in contact. The slightest jar, however, nullifies this action.

The force of sliding friction is:

$$
F=f N,
$$

in which F is the total resistance or force which opposes the relative motion of two surfaces in contact, N is the total pressure normal to those surfaces, and f is the factor or coefficient of friction. This formula, which expresses the far from well-established laws of sliding friction - assumes that the total force of friction is independent of the area of the surfaces in contact, of their relative velocity, and of the intensity of pressure,
i.e., the pressure per unit of surface. According to this expression, F is equal simply to the product of the total normal pressure by the factor f. If the normal pressure and velocity be low, and the surfaces dry or but slightly lubricated, f may be considered as having a constant value for the same materials and state of surfaces; but, in the wide range of conditions met in practice, it has been found that the value of f is affected also by the velocity, the intensity of pressure, the temperature of the surfaces, and the viscosity of the lubricant, so that the formula, as above, is incomplete and approximate. If, however, these effects be all considered in the value assigned to the factor f, and this value be determined independently for each case, the formula will hold.

From the formula for F, we have:

$$
f=F / N=\tan \phi,
$$

i.e., the coefficient of friction is the tangent of an angle known as the angle of friction ϕ. Thus, in Fig. 4I, let $A B$ and $A C$ represent planes hinged at A and supporting a body D of weight W. Keeping $A C$ horizontal,

FIG. 41 let B be raised until the limiting condition for equilibrium of the body D is attained, that is, until with any further elevation of B the body will slide downward. Let the angle $B A C=\phi$. Resolve W into components $D E$ and $E G$, perpendicular and parallel, respectively, to the surface $A B$. The force of friction F is
produced by the former of these components which is the total normal pressure N on the contact-surfaces, and $E G$ is equal in magnitude and opposite in direction to F. Hence:

$$
F=f W \cos \phi=W \sin \phi, \text { and } f=\tan \phi
$$

31. Friction of Plane Surfaces: Friction Cone. Let Fig. 42 represent a body of weight W resting on a horizontal plane $A B$. While no force acts but that of gravity, the body will be held in equilibrium by the weight W, acting from the centre of gravity O, and by the reaction $R=N$ of the plane $A B$. This reaction is equal to and opposed to W, has the

FIG. 42 same line of action, is normal to the contact-surface, and is the resultant of the infinite number of infinitely small reactions from that surface.

Now assume a force $P=F$ as applied. Let the magnitude of this force be such that, with any increase, it will cause motion to the left, the limiting condition of equilibrium having been reached; it is therefore opposed by the full force of friction F. The body is now in equilibrium under the action of the forces, W, R, P, and F. The resultant of R and F is the virtual reaction R^{\prime} or $C O$, making the angle of friction, ϕ, with the line of action of R. Since equilibrium prevails, W, R^{\prime}, and P meet at a common point O. For motion to the right, similar but reversed conditions exist, as is shown by
dotted lines. In either case, the supporting plane $A B$, the normal reaction R, and the force of friction F may be replaced by the virtual reaction R^{\prime}, making the angle of friction with the normal to the contact-surface, and in such a direction that its component parallel to that surface will oppose the relative motion of the two bodies.

It will be seen that the limiting condition for equilibrium, with regard to motion in any direction, is that the

Fig. 43 virtual reaction shall lie on the surface of the cone described by the revolution of the triangle $O C D$ about the normal $O D$. This is the friction cone or cone of resistance. When the force P is less than F, R^{\prime} falls within the surface of the cone and there will be no motion; when P is greater than F, R^{\prime} lies beyond the cone, and motion ensues.

When the contact-surfaces are inclined, the conditions are the same as with level surfaces, except that, owing to the inclination, the weight W has a component acting along the incline and tending to pull the body downward. Thus, let Fig. 43 represent
an inclined plane of angle $B A C=\theta$, on which a body of weight W rests. In the upper diagram (A), let P be a force acting along $A B$ and just sufficient to move the body upward on the incline. Momentary equilibrium exists under the action of the weight W, the normal reaction R which is equal to and opposed to the normal pressure N, and the force of friction F which acts downward along $A B$. The resultant of R and F is the virtual reaction R^{\prime}, inclined to R by the angle of friction. Resolving W and R^{\prime}, parallel and perpendicular to $A B$, we have :

$$
P=a c=a b+b c=W \sin \theta+F
$$

In diagram (B), let P^{\prime} be the force which is just sufficient to move the body downward on $A B$. The force F now acts upward. Resolving as before :

$$
P^{\prime}=a c=a b-b c=W \sin \theta-F
$$

32. Friction of Screw Threads. The screw thread is essentially but an inclined plane wrapped around a cylinder. In a square thread, the radial elements of the thread surface are perpendicular to the axis of the cylinder; in a triangular thread, these elements are inclined to that axis. The axial load W is borne usually by the bolt, whose thread thus corresponds with the contact-surface of the body D in Fig. 43; the nut thread is then similar in its action to the surface $A B$ in that figure, the nut being supported by a bearing surface.

The pressure on these threads is assumed to be concentrated on the mean helix, or the circumference of
the mean thread-diameter d, of pitch angle α, as in Fig. 44. Each element of the thread surface is regarded as sustaining an equal elementary portion of the total load or stress W on the bolt, and each element has therefore a frictional resistance of the same magni-

FIG. 44
tude. Since the conditions for all elements are thus identical, the total thread resistance, the axial load, and the external turning forces on the nut may be assumed to be each equally divided and concentrated at two points, 180 degrees apart, on the circumference of diameter d. The forces P, for lifting the load, thus
form a couple whose arm is d; and similarly the forces P^{\prime}, for lowering, have the same arm and points of application. In Fig. 44, these points are H and K.
(a) Square Threads. In Fig. 44, taking the nut as the turning member, let $A B C$ be the inclined plane formed by developing one convolution of the nut thread of mean diameter $d ; A B$ is the contact-surface of that thread, and $E G$ represents a portion of a bolt thread. The base of the plane is πd, its height is the pitch p, and the pitch angle is $B A C$. Consider the forces P or P^{\prime} as applied to the nut in a plane normal to the axis, and as tangent to the mean thread circumference.

When the nut thread is on the point of moving to the left to raise the load, its front half, whose center of pressure is at H, is in equilibrium under the action of one of the forces P, the reaction R^{\prime} making the friction angle with the normal reaction R, and the reaction $R_{1}=W / 2$ of the nut support, which reaction is vertical as the friction of the support is neglected. In the force polygon, lay off $a b=R_{1}$, and draw $b c, b c^{\prime}$, and $c a$ parallel, respectively, to the lines of action of R^{\prime}, R, and P.
Then,

$$
P=c a=W \tan (\phi+\alpha) .
$$

When the nut thread is about to lower the load under the action of the force P^{\prime}, the virtual reaction at the contact-surfaces becomes $R_{2}{ }^{\prime}$, making the friction angle with the normal reaction. Equilibrium then exists under the action of the force P^{\prime} and the reactions R_{1} and $R_{2}{ }^{\prime}$. Drawing $b d$ parallel to the latter,

$$
P^{\prime}=d a=W \tan (\phi-\alpha)
$$

In order to eliminate all friction but that of the screw thread, the section $E G$ of the bolt thread has been assumed to have no lateral motion.
(b) Triangular Threads. In Fig. $44 a$, let N and N^{\prime} be the normal pressures on square and triangular threads, respectively. Then, $N^{\prime}=N \sec \beta$, in which β is the base-angle of the triangular thread. If F and F^{\prime} be the forces of friction for the two threads, we have, since $F=f N$:

$$
F^{\prime}=f N^{\prime}=f N \sec \beta=F \sec \beta
$$

Hence, as compared with the square thread of the same pitch angle, the friction F^{\prime} of the triangular thread is $\sec \beta$ times greater. To determine the force P in Fig. 44 for these conditions, prolong the lines of action R and R^{\prime}, and, at any point; draw the line ef perpendicular to R. This line is proportional to the force F. From e draw eg making the angle β with ef; from f drop the perpendicular $f g$ on eg , thus determining the line eg which is proportional to the force F^{\prime}. Revolve $e g$ to $e h$ on ef prolonged, and draw $H h$ which is then the line of action of the virtual reaction $R^{\prime \prime}$ of the triangular thread. In the force polygon, lay off $b c^{\prime \prime}$ parallel to the line of action of $R^{\prime \prime}$, and the force P will then be $a c^{\prime \prime}$.
33. Pivot and Collar Friction. When the lower end of a vertical shaft, subjected to end thrust, is supported and guided by a step bearing, the end of the shaft forms a pivot journal; the latter may be plane, conical, globular, etc.
(a) Plane Pivots. This form is shown in Fig. 45.

To analyze graphically, let the total load on the shaft be W, and, as with the screw thread, assume it to be equally divided and one-half concentrated at each of the two points A and A^{\prime}, diametrically apart, on the circle of radius r described on the disk of radius r_{1}. The total normal pressure on the bearing

Fig. 45 is W; the intensity of pressure, or average pressure per square inch, is $W / \pi r_{1}{ }^{2}$. The total force of friction is $F=f W$, and, assuming uniform pressure over the disk, the frictional resistance per unit of area is $f W / \pi r_{1}{ }^{2}$.

To determine the relation between the radii r_{1} and r, consider the circumference $2 \pi r$ to be an elementary ring of width $d r$ and of area $2 \pi r d r$. The total normal load on this ring is :

$$
w=2 \pi r d r \times W / \pi r_{1}^{2}
$$

Multiplying w by the coefficient of friction f gives the frictional resistance of this elementary ring, and this product, multiplied by the radius r, is the moment of this elementary resistance, or :

$$
w f r=m=\frac{2 f W}{r_{1}^{2}} \cdot r^{2} d r .
$$

The integral of this expression, between the limits r_{1}
and zero, gives the moment of the total frictional load or force F, which is :

$$
M=\frac{2 f W}{r_{1}^{2}} \int_{0}^{r_{1}} r^{2} d r=\frac{2}{3} f W r_{1} .
$$

Dividing this moment by its force, $F=f W$, we have the mean radius at which F acts, or :

$$
M / F=\frac{2}{3} r_{1}=r .
$$

In the diagram, $B B$ is the plane of the disk, $C D$ is one-half W, and $D E$ and $D G$ are the virtual reactions at the points A and A^{\prime}, respectively.
(b) Conical Pivots. Fig. 46 represents a cone-shaped pivot. Let θ be the half-angle of the cone, r_{1} the radius of the upper end of the jour-

Fig. 46 nal, and W the total axial load. As with the plane pivot, consider one-half of W as concentrated at each of two points, 180 degrees apart, on an elementary strip of the conical surface of radius r and width $d r$. Resolve W in the directions of the two normals $N N$ to the contact-surface at these points. Then, $N=W / 2 \sin \theta$, and the total force of friction is:

$$
F=2 f N=f W / \sin \theta
$$

By using the same method as with the plane pivot, the mean radius at which the total force of friction acts will be found to be $\frac{2}{3} r_{1}$. Hence, a diagram similar to
that in Fig. 45 will show the forces graphically, due regard being had to the change in the value of F.
(c) Mean Radius of Friction. For the two cases discussed, this radius is theoretically $\frac{2}{3} r_{1}$, where r_{1} is the greatest radius of the bearing. This is true of all pivot bearings whose projected area is circular, and not annular. This theoretical value assumes a uniform intensity of pressure and a constant value of f for the whole surface of the bearing. These conditions do not exist in practice, and a mean radius of friction equal to one-half the greatest radius of the bearing surface of the pivot is generally taken as more correct. With this change, the formulæ, as deduced above, hold.
(d) Collar Friction. As shown

Fig. 47 in Fig. 47, the collar-bearing is simply the plane pivot reduced to annular form. Let W be the total axial load on the shaft, and assume it to be equally divided and one-half concentrated at each of the points A and A^{\prime}. The external radius of the bearing is r_{1}; its internal radius is r_{2}; and the mean radius of friction is r. The value of r, in terms of r_{1} and r_{2}, is to be found.

The total force of friction is $f W$, and, assuming a uniform pressure over the whole surface of the bearing, the frictional resistance per unit of area is $W / \pi\left(r_{1}{ }^{2}-r_{2}^{2}\right)$.

The area of an elementary ring of radius r is $2 \pi r d r$. The total load on this ring is:

$$
w=2 \pi r d r \times W / \pi\left(r_{1}^{2}-r_{2}^{2}\right)
$$

The frictional resistance of this load is $f w$ and the moment of this resistance is :

$$
m=f w \times r=f r \times 2 \pi r d r \times W / \pi\left(r_{1}^{2}-r_{2}^{2}\right) .
$$

The integral of this expression between the limits r_{1} and r_{2} gives the moment of the total frictional load or force F, which moment is:

$$
M=\frac{2 f W}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)} \int_{r_{2}}^{r_{1}} r^{2} d r=\frac{2}{3} \cdot \frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}} \cdot f W
$$

Dividing this moment by the force $F=f W$, the mean radius of friction is :

$$
r=\frac{2}{3} \cdot \frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}} .
$$

34. Journal Friction; Friction Circle. - (a) Journal friction is complex in analysis, since the fit is, in most cases, more or less free, and pure sliding friction between cylindrical surfaces rarely occurs in ordinary machinery, although in the mechanism of precision it is the rule. The usual shaft journal rests in its bearing somewhat loosely, giving theoretically a line bearing between cylindrical surfaces of different radii, which is rolling friction. When the shaft revolves, friction causes the journal to roll up the side of the bearing, like a car-wheel moving up an inclined track. The journal ascends until the weight makes it slide backward, and this rise and fall continue with every variation in the coefficient of friction. The method of analysis which follows is that first established by

Rankine and later developed by Hermann and others. It applies to close-fitting bearings only.

In Fig. 48, let A be a cylindrical journal at rest in the bearing B; the forces acting are the weight or other vertical pressure $W=C D$ and an equal and opposite reaction from the bearing at the point G. Now, let there be applied a turning force P, normal to a radius and of such magnitude that the limiting condition of equilibrium is reached, the frictional re-

FIG. 48
sistance is overcome, and the journal is on the point of beginning clockwise rotation. The forces acting are then W, P, and the virtual reaction R^{\prime} from the bearing, whose line of action is yet to be determined.

Prolong the lines of action of W and P until they meet at C; lay off $C D=W$ and $D E$ equal to P and parallel to the latter's line of action. Then, $C E$, the resultant of W and P, is equal in magnitude, opposed in direction, and has the same line of action as the virtual
reaction R^{\prime} from the bearing, since W, P, and R^{\prime} are in equilibrium and their lines of action must meet at a common point. Draw CEH, and, from the centre of pressure K, lay off $K H=R^{\prime}$. This reaction is simply the resultant of the indefinite number of indefinitely small reactions from the bearing.

Draw the line of action $O L$ of the normal reaction R through the point K; resolve R^{\prime} normally and tangentially. Then, $R=L K$ is the total normal pressure on the journal, and the force of friction is $F=H L=K L \times$ coefficient of friction f. Since the virtual and normal reactions are inclined from each other by the angle of friction, the angle $H K L=O K E=\phi$.
(b) Friction Circle. In Fig. 48, drop the perpendicular $O M$ from the centre O on the line of action of the reaction R^{\prime}. Then, if r be the radius of the journal $O M=r \sin \phi$. If now the radial arm $O N$ and the force P be revolved through all positions about the centre O, it will be found that, while the location of the point of intersection C will be changed, the perpendicular distance of the line of action of R^{\prime} from the centre will be equal in every case to $r \sin \phi$. Hence, the locus of such points of intersection as M is a circle described from O and of radius $r \sin \phi$. This is the friction circle.

The principle is general, applying to all forms of loading of a closely fitting journal and bearing, either of which has motion in any direction relatively to the other. The dotted lines show the effect of anti-clockwise rotation, the force P having the new line of action $C N^{\prime}$, but the other conditions remaining the same. If
it be assumed that the journal is fixed and the bearing revolves - like a connecting rod pulling a crank pin the magnitude and lines of action of R^{\prime} will be the same for rotation in either direction, but the centres of pressure will be changed from K and Q to K^{\prime} and Q^{\prime}, respectively. Again, assume that the pressure acts upward instead of downward, as at (a), Fig. 48, and that the rotation is clockwise, the force P acting from N^{\prime} to C. If the bearing be the moving member, the centre of pressure will be at Q^{\prime}, at which point R^{\prime} will act downward on the journal ; if the journal be the moving member, the load will act upward and R^{\prime} downward at the point Q. It will be seen that the friction circle and a tangent to it, which is the line of action of the virtual reaction R^{\prime}, wholly replace either the journal or the bearing in the graphical investigation of their friction. The general laws of sliding friction may be applied to determine on which of these tangents R^{\prime} acts in any given case.
35. Link Connections: Friction Axis. A link is a straight, rigid machine member employed to transmit power between two rotating or oscillating members, or one rotating and one sliding member, as is the case with the connecting rod. Journal friction therefore exists at each end of the link; the principles governing its action are those established in Art. 34. If there were no friction, the radius of the friction circle would be zero and the force would be transmitted from one member to the other along the line joining the centres of the journals or bearings of the link. With friction,
the resultant of the transmitted force and the force of friction acts along the friction axis, which is a line

Fig. 49 tangent to the friction circles of the two journals.

There are four fundamental cases of this action, two of which are represented in Figs. 49 and 50 and the others deduced therefrom. In each of these mechanisms, A is a link and B and C are hinged levers, P is a force acting upward on the lower or driving lever, and the dotted lines show the path in ascending.
It will be observed that:
(a) The link may be assumed to be in momentary equilibrium in any given position, but its efficiency, as thus determined, applies to that position only. Also, the direction of the friction axis depends on which of the connected levers is the driver, and

FIg. 50
hence on whether the link is in tension or compression.
(b) A force and its reaction may be regarded as two equal and opposite forces having the same line of action. Since the link is in equilibrium, the friction axis is the line of action of a force acting from one journal and an opposing reaction from the other.
(c) The link bearings move on the journals which they support, the journals being thus relatively stationary. The direction of this motion is determined by that of the mechanism.
(d) Since the link is in equilibrium, the force of friction at either journal must so act as to oppose the relative motion of the bearing. This consideration determines the direction of the friction axis. If the direction of rotation is the same with both bearings, the axis will lie diagonally, being tangent to one friction circle on one side, and to the other on the opposite side. If the bearings rotate in opposite directions, the friction axis will be parallel to the geometric axis.

In Fig. 49, the lower lever is the driver. Hence, disregarding friction, the force on the lower journal is concentrated at the point a on the geometric axis, acting there on the lower bearing of the link. This puts the latter in compression, and its force acts on the lower side of the upper journal at the corresponding point b. From the path of the mechanism, the motion of both bearings is seen to be anti-clockwise. At the lower bearing, the tangential force of friction, $F=d e$, acts from left to right, and therefore on the left side
of the friction circle, where it and the normal pressure line $c d$ combine to form the resultant pressure line ce. Hence, the friction axis is here tangent to the left side of the friction circle.

At the upper journal, F must act from right to left, combining with the reaction from the journal to form the virtual reaction which, acting along the line $e c$, must be tangent to the right side of the friction circle. If, on the other hand, the upper lever be the driver in lifting the connected parts, the direction of motion of the bearings will be the same, but the link will be in tension and the friction axis will be tangent to the other side of each friction circle.

In Fig. 50, the lower lever is the driver and the link is again in compression, but the direction of rotation of the two bearings is not the same. Hence, the forces of friction act on the same sides of the two friction circles and the friction axis is parallel to the geometric axis. If, again, the upper lever be the driver in lifting the connected parts, the direction of motion of the bearings will not be changed, but the link will be in tension, and the friction axis, while still parallel to the geometric axis, will be tangent to the other sides of the friction circles.
36. Chain Friction: Resistance of Ropes to Bending. (a) Chains. The friction of a chain in passing over a chain drum or sprocket wheel, is a modified form of journal friction, the pins joining the links constituting the journals. Let Fig. 5 I represent a chain pulley, of effective radius R, revolving in a clockwise direction.

The load on the advancing or left side of the chain is W; the driving force on the right or receding side is P. Let r be the radius of the pins joining the links, and r_{1} that of the wheel journal.

Relative motion of the links of the chain occurs only when the latter bends at the joints on reaching and leaving the horizontal diameter $E F$ of

Fig. 5I the wheel. At this time, the advancing link A turns in an anti-clockwise direction on the link B, the latter serving as a bearing; and, similarly, the link C is rotated in the same direction with regard to the link D. From Art. 34, it will be seen that the effect of these actions is to remove the lines of action of the load W and the force P from the vertical lines passing through the centres of the link-pins over to the left by the distance $r \sin \phi$, i.e., the friction of the joints of the chain increases the leverage of the load and decreases that of the driving force by that amount. Similarly, the line of action of R^{\prime}, the vertical reaction of the wheel-bearing, is removed to the right through the distance $r \sin \phi$. R^{\prime} is the resultant of P and W. Hence:

$$
P=W \cdot \frac{R+\left(r+r_{1}\right) \sin \phi}{R-\left(r+r_{1}\right) \sin \phi} .
$$

(b) Ropes. The resistance of a rope in passing on or off a sheave or grooved pulley has an effect similar to that of chain friction on the lines of action of the load and driving force, i.e., the lever arm of the load is increased, and that of the driving force decreased, by the same amount in both cases. This effect is not due, however, to the same causes as with the chain. In the rope, it is produced, when the latter is bent, by the relative motion and consequent friction of the strands, by the compression of the fibres on the inner side and the stretching of those on the outer in winding on, and by the reversal of this action when the rope leaves the pulley.

Thus, if we assume the rope to be wound on a pulley, like the chain in Fig. 51, it will be bent in advancing when it passes at E above the horizontal diameter $E F$, and will be straightened again when it descends below F at the right. In the first of these operations, the normal forces acting on the horizontal cross-section of the rope at E are the tension at the centre due to the load, the tension on the outer half from the stretching of those fibres, and the opposing compressive force on the inner half. The resultant of these three forces is a tension which acts at a distance, which for convenience we shall call s, outward from the centre of the rope, so that, neglecting the friction of the pulley journal, the lever arm of the weight W is $R+s, R$ being the distance from the centre of the pulley to that of the rope.

When the rope straightens at F, the same forces act, but those of tension and compression from bending change places, occurring, respectively on the inner and
outer halves of the cross-section. Hence, the resultant tensile force acts between the pulley- and rope-centres, at the distance s from the latter, so that, neglecting journal friction, the lever arm of the driving force P is $R-s$. It will be seen that the distance s thus corresponds with the radius of the friction circle for chain friction; and, as with the latter and considering journal friction, we may write :

$$
P=W \cdot \frac{R+r_{1} \sin \phi+s}{R-r_{1} \sin \phi-s}
$$

in which $r_{1} \sin \phi$ is the radius of the friction circle for the journal of the pulley.

The value of s can be expressed only by empirical formulæ, the constants of which have been derived from experiment. This follows, since the resistance of a rope to bending varies directly as the tensile stress in it due to the load or the driving force ; directly as some power of its diameter, since the smaller the rope, the greater its pliability; and inversely as the radius of the pulley, since the greater this radius, the less the required bending. Evidently, it also depends upon the material of the rope, its length of service, etc.
37. Belt Gearing. The friction of a belt on a pulley in power transmission is the friction of rest and not that of motion; it is not the cause of lost work, but the means by which useful work is done in preventing relative motion of the working parts; and the greater within practical limits it becomes, the better. With regard to the friction of motion of belt gearing - that of the pulley shaft in its bearing - the reverse is true,
its efficiency being much less than that of toothed gearing, since the power transmitted is directly proportional

FIG. 5^{2} to the difference between the tensions of the tight and slack sides of the belt, while the aggregate thrust on the bearing which produces journal friction is due to the pull of both of these tensions.

The graphics of belt gearing present no problems which have not been examined previously herein. Figure 52 represents a pulley A driving through belting a pulley B, the rotation being anti-clockwise. Each pulley may be considered as in equilibrium under the action of a driving force or a resistance, the two belt tensions, the normal reaction of the bearing, and the journal friction, the latter being relatively large. The angle of contact θ between belt and pulley can be found by construction, and the ratio between the two tensions can be determined from the well-known formula:

$$
\frac{T_{2}}{T_{1}}=E^{f \theta}
$$

in which the angle θ is given in circular measure, E is
the base of the Napierian system of logarithms, T_{2} and T_{1} are, respectively, the tensions of the driving and slack sides of the belt during motion, and f is the coefficient of friction.

Prolong the lines of action of these tensions until they intersect at O; and, from O, lay off $O C$ and $O D$ of such dimensions that $O C / O D$ is equal to the tension ratio just found. Their resultant $O E$ gives the line of action of the resultant T of T_{2} and T_{1}, which line intersects the lines of action of the resistance W, of leverarm l, and the driving force P, of $\operatorname{arm} L$, at the points F and G, respectively. From the latter points and tangent to the friction circles, draw the lines of action of R_{1} and R_{2}, the virtual reactions of the bearings.

The driven pulley B is in equilibrium under the action of the resistance W, the resultant T of the tensions, and the virtual reaction R_{1}, the magnitude of W and the lines of action of all the forces being known. In the lowest force triangle, lay off $b c=W$ and draw $b a$ and $c a$ parallel, respectively, to the lines of action of T and R_{1}, thus determining the magnitudes of the two latter. To find the magnitude of P, consider the driving pulley as similarly in equilibrium and lay off, in the second triangle, $a b=T$ and draw $a d$ and $a b$ parallel, respectively, to the lines of action of P and R_{2}. The magnitude of the tensions is determined in the upper force triangle by resolving the resultant T of the tensions parallel to the lines of action of its components, T_{1} and T_{2}. The effect of journal friction can be shown by replacing R_{1} and R_{2} by reactions passing through the
centres of the respective journals, and drawing the corresponding sides of the force triangles parallel thereto, which method will give the values, excluding journal friction, of P, T, T_{1}, and T_{2} for the same resistance W.
38. Friction of Gear Teeth. - In the transmission of power by gear wheels, a part of the lost work is expended in overcoming

Fig. 53 the frictional resistance of the teeth. This is due to the fact that a pair of teeth, while engaged, move one upon the other, the line of bearing changing continually on both contact surfaces and the relative motion of the latter being a combination of rolling and sliding.

Figure 53 (a) represents the positions, at the beginning and end of engagement, of the same pair of involute teeth on the spur gears A and B, the wheel A being the driver and rotating in a clockwise direction. The two pitch circles are tangent at the point p on the line joining the centres of the wheels. The arcs $b p$ and $c p$ are the arcs of approach; $p b^{\prime}$ and $p c^{\prime}$ are the arcs of recess. The line $a a^{\prime}$ is the line of action, which is the
path of the points of contact of the teeth during engagement. This line is normal to the contact-surfaces and in properly formed teeth it always passes through the point p, making an angle with the horizontal called the angle of obliquity of action.

In approach, the points b and c gradually draw nearer until they meet at p. Since the arc $a b$ is shorter than the arc $a c$, it follows that the flank of the driving tooth rolls through a distance equal to $a b$ on the face of the driven tooth, and slides for a distance equal to $a c-a b$. In recess, this process is reversed, the face of the driver rolling on the flank of the driven tooth through a distance equal to $c^{\prime} a^{\prime}$, and sliding through the distance $b^{\prime} a^{\prime}-c^{\prime} a^{\prime}$.

Figure 53 (b) shows the engaged portions of the two gear wheels A and B. In this figure, it is assumed that the lengths of the arcs of action, $b p b^{\prime}$ and $c p c^{\prime}$, in (a), are such that two pairs of teeth are simultaneously engaged, and that the normal pressure is the same between the teeth of each pair. The line of action is αa^{\prime} as before.

If there were no friction, the reaction due to the load on the driven teeth 3 and 4 would act on the drivers I and 2 along the line $a^{\prime} a$ from right to left, and this reaction would be exactly equal to the force P, exerted by the driving wheel and acting in the direction αa^{\prime} and on that line. From the enlarged force polygon (c), it will be seen that, considering friction, the reaction from tooth 3 takes the direction $d a$, and that from tooth 4 , the direction $a^{\prime} d$, both reactions being inclined to the normal by the angle of friction ϕ and intersecting the line of centres at the point d. If these virtual reactions
be resolved vertically and parallel to $a a^{\prime}$, the vertical components will neutralize each other and the true line of action of the force and the resultant reactions will become $a_{1}^{\prime} a_{1}$, parallel to $a^{\prime} a$ and at a perpendicular distance therefrom of $\tan \phi \times a a^{\prime} / 2$, which, assuming $a a^{\prime}$ to be equal to the circular pitch, becomes $\tan \phi \times$ pitch $/ 2$.

The friction of spur gear teeth is then, in its effect, similar to chain friction. With frictionless motion, both the force and resistance would act along the normal $a a^{\prime}$; with friction, the line of action is shifted to the parallel line $a_{1} a^{\prime}{ }_{1}$. This change increases the distance from the centre of gear A, at which the load from gear B acts on A, and decreases the distance from the centre of gear B, at which the driving force from gear A acts on B. Hence, in general, the leverage of the power is lessened and that of the load is increased by the distance determined above, $\tan \phi \times$ pitch $/ 2$.

Figure 53 and this discussion refer to involute teeth. With cycloidal teeth, the line of action is not a straight line, as $a a^{\prime}$, but is an arc of the circle with which the profiles of the teeth are described. The loss from tooth friction and the wear in service are, in consequence, less than with any other form of tooth.

EXAMPLES

23. Friction of Stationary Engine. The readiest practical approximation to the power expended in overcoming the friction of an engine can be obtained by taking indicator cards with the engine unloaded and running at various speeds. There are two important objections to this method: the errors of the indicator
and the fact that the results found include all resistances, so that it is impossible to separate that for any particular bearing. On the other hand, the difficulty with analytical or graphic methods is that the coefficient of friction cannot be estimated with much accuracy, since

Fig. 54
it appears to vary not only with pressure, but with velocity, the temperature and condition of the contact-surfaces, the viscosity of the lubricant, etc. The graphic method for the crosshead, crank pin, and shaft bearings is shown in Fig. 54.

The data are: cylinder diameter, 15 inches; stroke, I 8 inches ; length of connecting rod, 36 inches; maximum unbalanced pressure on piston, 100 pounds per square inch; corresponding total force acting on piston before cutoff, I7,67I pounds.

In the position shown in Fig. 54, the crosshead is approaching the mid-point of the forward stroke, and hence the angle with the horizontal made by the connecting rod is increasing, while that between the connecting rod and crank is decreasing. Only centre lines and the friction circles are shown. In computing the radius of these circles, the same diameter, 6 inches, will be taken for the crosshead, crank pin, and shaft, since the friction circle is so small that even a considerable variation in these diameters will affect but little its radius, in the graphic method illustrated here. The crosshead slipper reciprocates and the bearing of the crosshead pin oscillates, while the crank pin and shaft are rotating journals. The coefficient of friction will hence vary considerably for each. For convenience, an average coefficient, $f=0.185$, will be taken for all, with a consequent angle of friction ϕ of $10^{\circ} 30^{\prime}$. Then, the radius r of each journal is $6 / 2=3$ inches, and the radius of the friction circle is $r \sin \phi=3 \times 0.182=0.546$ inch.

From the principles given in Art. 35, the small arrows, showing the direction of the frictional resistance, are described at each bearing, and the friction axis $A B$ is drawn, as the line of action of the thrust T on the connecting rod. The crosshead pin is in equilibrium under the action of T, the piston-force P, and the virtual reaction $R_{1}{ }^{\prime}$, inclined to the left by the angle ϕ from the normal R_{1} to the slipper bearing. These three forces must meet at the common point A, which is the intersection of the lines of action of P and T; this determines the location of $R_{1}{ }^{\prime}$. In the force polygon, lay off $a b=P$
and draw $a c$ and $b c$, parallel respectively to the lines of action of $R^{\prime}{ }_{1}$ and $T . \quad$ Then, $b c=T$.

The direction of the line of action of the resistance of the load to the motion of the shaft depends upon what the latter drives and upon where the power is transmitted from this driven member. For compactness in the drawing, assume in this case that there is a gear wheel, 2 feet in diameter, fixed to the shaft and engaging a similar wheel which is set on the engine centre-line and between the shaft and crosshead. It is required to determine, for the shaft-driven gear, the magnitude of the resistance W, of $\operatorname{arm} L=\mathrm{I}$ foot, which, at this position of the engine, the force P will overcome.

The crank, the shaft, and the gear wheel fixed to the latter form virtually a bell-crank whose horizontal arm is of length L. This bell-crank is acted on by the forces T and W, the normal reaction R_{2} from the bearing, and the frictional resistance to the shaft's motion, which resistance acts in a clockwise direction. The lines of action of T and W meet at the point C and the virtual reaction $R_{2}{ }^{\prime}$ from the shaft bearing acts, by Art. 35, on a line drawn from C and tangent to the upper side of the friction circle. In the force polygon, the intersection of $c d$ and $b d$, drawn parallel to the lines of action of R_{2}^{\prime} and W, respectively, give $W=b d=$ II,000 pounds.

Disregarding friction, the forces are T^{\prime}, R_{1}, and R_{2}, as is shown by dotted lines. Constructing the force polygon for these conditions, we have $b e=W=13,200$
pounds. For this position of the engine, its efficiency is therefore $11 / \mathrm{I} 3.2=83.3$ per cent, and the power

FIG. 55 expended in overcoming the friction of these four bearings is 16.7 per cent of the total force P on the piston.
24. Friction of Screw Jack. Figure 55 represents the upper part of an ordinary screw jack. The screw A engages the nut B, fixed in the supporting frame C; the load W rests on the swivel plate D, journalled on the screw head E, the latter being bored for the bar by which power is applied to turn the screw and lift the load.

The data are: nominal or outside diameter of screw, $2 \frac{9}{16}$ inches; depth of thread, $\frac{1}{4}$ inch; diameter at base of thread, $2 \frac{1}{16}$ inches; pitch of screw, $\frac{1}{2}$ inch; pitch angle α of mean helix (Art. 32), 4°, about.

Carefully conducted laboratory experiments on a well oiled screw jack gave, for the resistance of the thread, a coefficient of friction $f=0.1494=\tan \phi$, and hence an angle of friction ϕ of $8^{\circ} 30^{\prime}$. These results are doubtless somewhat lower than those usual in practice.

Let the circle of radius $r_{1}=1 \frac{5}{32}$ inches be the horizontal projection of the mean helix and assume the load
W to be equally divided and its halves concentrated at the upper and lower extremities of the vertical diameter of this circle. If F be the horizontal component of the thread resistance on one-half of the mean helix and P be the total horizontal force acting, equally divided as a couple, at the ends of the diameter $2 r_{1}$ on the bar to raise the load, then one-half or $P / 2$ will be taken as acting at the same points as F.

The screw rotates in an anticlockwise direction to raise the

FIG. 5^{6} load, the bolt thread thus moving upward on the stationary nut thread. The conditions are then as shown in Fig. 56 , in which $B A C$ is the pitch angle, $A B$ is the upper surface of the nut thread, and D is a portion of the bolt thread representing one-half of a convolution. This section D is in momentary equilibrium under the action of the load $W / 2$, the virtual reaction R^{\prime} making the angle of friction ϕ with the normal reaction R, and the horizontal raising force $P / 2$. Hence :

$$
M N=\frac{P}{2}=\frac{W}{2} \tan (\alpha+\phi),
$$

which is also the magnitude of the force $F=G K$ (Fig. 55), acting at each of the two points of application of the load W on the mean helix.

The tangent of $\alpha+\phi$ is 0.222. Taking W as io tons (20,000 pounds) $P / 2=2220$ pounds, which is one of the forces of the horizontal couple acting at the extremities of the diameter $2 r_{1}=2 \frac{5}{16}$ inches to raise the load; it is also equal to the force F of the resisting couple acting with the same arm.

This calculation assumes that the load rotates with the jack screw, which is seldom the case. If the load be stationary, the friction of the swivel plate D must be considered. The mean radius of friction (Art. 33) of this plate is (Fig. 50) $r_{2}=1 \frac{1}{4}$ inches. Taking the same angle of friction, and assuming that one-half of the load W is concentrated at each of two points diametrically apart, as before, the force of friction F^{\prime} ($G H$ in Fig. 50) acting at the extremities of the diameter $2 r_{2}$ is $10,000 \times$ $0.1494=1494$ pounds.

There are thus two couples which, for simplicity, may be considered as acting in the same plane: $P / 2=F=$ 2220 pounds with arm of $2 \frac{5}{16}$ inches, and $F^{\prime}=1494$ pounds with arm of $2 \frac{1}{2}$ inches. These two couples may be assumed to act at any points in their respective circumferential paths. Taking the points of application as 90 degrees apart, as in Fig. 55, the resultant couple is found to have a force $F^{\prime \prime}=2666$ pounds with an arm d of 3.32 inches. If the raising bar be of such length that its couple, as actually applied, has an arm of 24 inches, the force required at each of its ends will be about 368 pounds.

Since it is not possible to make the load W absolutely central, there will also be journal friction on the pin L
on which the swivel-plate is centred. The amount of this resistance will depend on the eccentricity of the load and the resulting normal pressure on the pin. If this pressure be known, the frictional resistance can be determined by the methods of Art 34.
25. Pulley Blocks: Relation of Load and Power. Professor Hermann ${ }^{1}$ gives the method shown in Fig. 57 for finding the relation of load and power, and the tensions in the various portions of a chain or rope passing over the sheaves of the pair of blocks of a tackle, friction being considered.

In Fig. 57, the blocks are threesheaved; the load W is suspended from the lower or movable block A, and the frame C of the upper or fixed

FIG. 57 block B is supported from above. The rotation of the sheaves in raising the weight is clockwise, the rope winding on at D and E and off at F and G. If the

[^2]upper or fixed end be secured to the hanger C, as at T_{1}, there will then be seven portions of the rope whose tensions, T_{1} to T_{7}, are to be determined - the last, or that of the hauling end, being equal to the lifting force P.

For any two consecutive sections of these sevenone on each side of a sheave of either block - the tension in the rope on one side constitutes the load, and that on the other, the power for the pair. If R be the effective radius of the sheave, r_{1} that of the blockjournal, and t be equal to $r \sin \phi$ or to s, as in Art. 36, then the relation between the power p and the load w on these two portions will be, for either a chain or a rope:

$$
\begin{equation*}
p=w \cdot \frac{R+r_{1} \sin \phi+t}{R-r_{1} \sin \phi-t} . \tag{I}
\end{equation*}
$$

At the journal of the lower block, the load W acts on the vertical tangent to the left (Art. 35) of the friction circle ; at the upper journal, the reaction of the support C acts on the similar tangent to the right. Again, from the figure, it will be seen that the unwinding or power side is the left on the lower block and the right on the upper, the tensile forces in the sections of chain or rope acting, in each case, at a distance $R-t$ from the centre, as shown by the full lines $a b$ and $c d$; similarly, on the respectively opposite, or load, sides of the blocks, the tensile forces act at a distance $R+t$ from the centre. Hence, as the lower block is free, it will, when ascending, swing to the left for a distance $2 t$, as shown in the figure, so that the tensile forces shall act
vertically. When upward motion ceases, the block swings backward until it is again vertically below the upper block; when the load is lowered, the process is reversed.

In passing from the fixed end of the chain or rope to the free or hauling end, its tension is increased, whenever it passes over a sheave, in the ratio given by the reciprocal of the fraction in the preceding equation. Hence, starting at the fixed end, the general expression for the ratio between the tensions in two consecutive sections is :

$$
\begin{equation*}
\frac{T_{n}}{T_{n+1}}=\frac{R-r_{1} \sin \phi-t}{R+r_{1} \sin \phi+t} \tag{2}
\end{equation*}
$$

In the left-hand figure, draw the horizontal line $H K$, cutting the lines of action of the rope-tensions $a b$ and $c d$ at K and H, respectively, and those of the load W and the reaction from the upper bearing at o_{2} and o_{1}, respectively. Then, $H K=2 R$ and the distances:

$$
\begin{aligned}
H o_{1} & =K o_{2}=R-r_{1} \sin \phi-t \\
o_{1} o_{2} & =2 r_{1} \sin \phi+2 t \\
H o_{2} & =H o_{1}+o o_{2}=K o_{1}=R+r_{1} \sin \phi+t
\end{aligned}
$$

Assume that the tension T_{1} in the first section from the fixed end is known and is equal to $H-I$ on the line $c d$. From I, draw through o_{1} the line $I-2$ cutting the line $a b$ at 2. Then, $K-2$ is equal to the tension T_{2} in the next succeeding section, for the triangles H, I, o_{1} and $K, 2, o_{1}$ are similar, and:

$$
\begin{equation*}
\frac{H, \mathrm{I}}{K, 2}=\frac{H o_{1}}{K o_{1}}=\frac{R-r_{1} \sin \phi-t}{R+r_{1} \sin \phi+t}=\frac{T_{1}}{T_{2}} . \tag{3}
\end{equation*}
$$

Continuing in the right-hand diagram, draw from the point 2 through o_{2} the line $I-2$ and by similar reasoning $H-3$ is the tension T_{3} in the third section. In the same way, $K-4=T_{4}, H-5=T_{5}, K-6=T_{6}$, and $H-7=T_{7}=P$ are found. The sum of the tensions, T_{1} to T_{6}, inclusive, which is the line $L M$, is equal to the load W, while the force P is, on the same scale, equal to $M N$.

Since the distances $\mathrm{Ho}_{1}, \mathrm{Ho}_{2}, \mathrm{Ko}_{1}$, and Ko_{2} are constant for any system of sheaves such as is shown in the figure, it is evident that the ratio $M N / L M$ is constant, and that any value of T_{1} may be assumed in finding the ratio. When the latter is determined, the value of P for any given value of W is given by the expression :

$$
P=W \cdot M N / L M
$$

As an example, consider a $3^{\frac{3}{4}}$-inch hemp rope ($\mathrm{I} \frac{1}{4}$ inches diameter), passing over a pair of 3 -sheaved blocks, as in Fig. 57. Take the power P, applied at the hauling end, as 1000 pounds, or slightly above 800 pounds per square inch of sectional area of the rope; and let the effective radius R of the pulley, i.e., that to the centre of the rope, be 6 inches, the diameter of the pin or shaft of each block be $1 \frac{1}{4}$ inches making $r_{1}=\frac{5}{8}$ inch, and the coefficient f of journal friction be o.I, giving $\phi=6^{\circ}$, about. It is required to determine the weight W which the given power P will lift.

It is necessary first to find the value of t, in order to draw the lines of action $a b$ and $c d$. This value is also that of s in Art. 36. It cannot be calculated with any great degree of accuracy for reasons given previously.

Various empirical expressions have been used. Eytelwein's formula, as employed by Reuleaux and Weisbach, ${ }^{1}$ gives, for the total stiffness or resistance to bending S of a hemp rope in both winding on, and unwinding from, a pulley:

$$
S=0.472 W d^{2} / R,
$$

in which W is the load and d and R are respectively the diameter of the rope and the radius of the pulley, both in inches.

Assuming that the resistance to winding is equal to that of unwinding - which is only approximately true -we have, for either operation :

$$
S / 2=0.236 W d^{2} / R .
$$

Now, if the rope were absolutely elastic, S would not exist, and the moment of the weight would be $W \times R$. Considering stiffness, this moment is, by Art. 36, $W(R+s)$. The added moment $W s$ is therefore equivalent to that produced by $S / 2$ acting at the radius R. Hence:

$$
W s=S R / 2
$$

Substituting :

$$
s=0.236 d^{2} \text { inch. }
$$

While the results given by this formula are somewhat high, it is sufficiently accurate for large hemp rope under heavy stress. For rope of other materials, the constants require modification. Substituting the value of $d, \mathrm{r} \frac{1}{4}$ inches:

$$
s=t=0.368 \text { inch. }
$$

1 "Mechanics of Engineering and Machinery," New York, 1896, Vol. I, § 197.

With $\phi=6^{\circ}$, the radius of the friction circle:

$$
r_{1} \sin \phi=0.625 \times 0.1045=0.065 \text { inch. }
$$

In Fig. 57, draw the upper sheave, the friction circle and the dotted tangent at G. Let fall the tangent at B until it meets at o_{1} the indefinite horizontal line $H K$. Draw the line of action $c d$ parallel, to the left, and at a distance t from the tangent at G; this line meets $H K$ at H, thus locating the latter point. From o_{1} set off to the left the distance $o_{1} o_{2}=2\left(r_{1} \sin \phi+t\right)=0.866$ inch; from o_{2}, drop the tangent A to the lower friction circle, and describe the latter to its right, thus determining the centre of the lower sheave. Erect the dotted tangent at the left of this sheave, and, at a distance t to the right of it, draw the line of action $a b$, intersecting $H K$ at K.

Assume any value - say 500 pounds - for $H-I$ and lay it off on the line $H d$. Then, as explained previously, draw $I-2,2-3,3-4$, etc. Adding $H-I, K-2$, $H-3, K-4, H-5$, and $K-6$, and dividing their sum by $H-7$, we have 3.7 , which is the value of the ratio W / P. Hence $W=3700$ pounds. If stiffness and friction were not considered, the value of this ratio would be 6 . The efficiency of the tackle is thus 6 I. 66 per cent, which is a fairly accurate result. This method assumes that the section T_{1} of the rope is vertical and thus parallel to the other sections.

The value of the ratio in Equation (3) is 0.865 . This value is constant throughout the system, and gives the relation between the tensions in any two consecutive sections of the rope.
26. Spur Gears: Relation of Load and Power.

Figure 58 represents the pitch circles of a train of spur gears, A, B, and C, with involute teeth. The power applied to the driving gear A is equivalent to a force P of $\operatorname{arm} L$; the resistance acting on the gear C is equal to a force W of $\operatorname{arm} L^{\prime}$. Assuming friction at the wheel journals and between the engaged teeth, it is required to determine the magnitude of the force P for a known resistance W.

The driving gear A is in equilibrium under the action of the force P, the reaction T_{1} from the teeth of gear B, and the virtual reaction R_{1} from the bearing. By Art. 38, the reaction T_{1} is parallel to the line $a a^{\prime}$ passing through the point of tangency of the pitch circles, the distance of T_{1} from the centre of A being greater than that of $a a^{\prime}$ by the amount

Fig. 58. given in the article cited. The lines of action of P and T_{1} intersect at c, and the reaction R_{1} drawn from c is, by Arts. 34 and 35 , tangent to the lower side of the friction circle.

The intermediate gear B is in equilibrium under the
action of the force T_{1}, the reaction T_{2} from the teeth of gear C, and the virtual reaction R_{2} from the bearing. Since the gear B is the driver for gear C and its motion is opposite to that of gear A, the reaction T_{2} has, by Art. 38, the direction and location shown in the figure, being parallel to the line $b b^{\prime}$ passing through the point of tangency of the pitch circles. The lines of action of T_{1} and T_{2} intersect at d, from which point the reaction R_{2} is drawn tangent to the lower side of the friction circle.

The driven gear C is in equilibrium under the action of the resistance W, the force T_{2}, and the reaction R_{3} from the bearing. The lines of action of T_{2} and W meet at e, from which point the reaction R_{3} is drawn tangent to the upper side of the friction circle.

The directions of all the forces acting on the train and the magnitude of one, the resistance W, are known. Starting with W, the force triangle for each gear and the force polygon for the train can be drawn by the general method, as shown by the diagram below.

For these gears, the angle of obliquity (Art. 38) is usually about 15 degrees, that is, the line $b b^{\prime}$ makes an angle of 15 degrees with the horizontal.

PROBLEMS

1. What weight can be drawn up an inclined plane rising I in 5 by a pull of 200 pounds: (a) when the pull is parallel with the plane; (b) when it is horizontal ? Disregard friction.
2. A wheel of 5 feet diameter weighs 2 tons, including its load. What is the least horizontal force necessary to pull it over a stone 4 inches high ?
3. A boiler weighing 5000 pounds is supported by tackles from the fore and main yards. If the tackles make angles of 30 and 35 degrees, respectively, with the vertical, what is the tension in each of the two ?
4. Sheer legs 50 feet long are spread 18 feet at the base. The back stay is 80 feet long. Find the stresses acting in each member when lifting a load of 25 tons at a distance of 20 feet from the foot of the sheer legs, the weight of the latter being disregarded.
5. A crane post is 12 feet high; its jib, 32 feet long, and stay, 23 feet long, meet at the peak A. Two backstays, making angles of 45 degrees with the horizontal, are in planes due north and due west from the post. A weight of 6 tons is suspended from A. Find the forces in the jib and stays: (a) when A is southeast of the post; (b) when A is due east; (c) when A is due south.
6. A rod weighing io pounds rests in a smooth hemispherical bowl which is fixed with its rim horizontal. The rod is 15 feet long, and a length of 3 feet is outside of the bowl. If the inclination of the rod to the horizontal be 30 degrees, find the reactions of the bowl.
7. A simple triangular truss, 24 feet span and 3 feet deep, is supported at the ends and carries a load of 3 tons concentrated at the middle. Find the stresses in each member.
8. The span of a roof is 16 feet; length of rafters, 9 and 12 feet, respectively. The rafters are spaced 2 feet apart and the roofing material weighs 16 pounds per square foot. Find the thrust on each rafter and the stress in the tie bar.
9. Let a roof truss, whose general plan is that shown in Fig. in, be unsymmetrical, the rafters to left and right having inclinations of 50 and 45 degrees, respectively, to the horizontal. The span is 45 feet; the trusses are spaced io feet apart; and the weight of the roof covering and snow is 40 pounds per square foot of roof surface. Find the stresses in the members.
10. Find the stresses in the members of this truss due to wind load, assuming the right end of the truss to be free. Take the horizontal wind pressure as 40 pounds per square foot.
11. A king post truss has a span of 16 feet and a rise of 8 feet. Find the stresses in the members due to a load of 18,000 pounds at the middle.
12. A floor beam, 18 feet long and carrying a uniform load of 180 pounds per linear foot, is trussed by rods which are $I_{\frac{1}{2}}$ feet below the middle of the beam. Consider the rods as jointed in the middle of the beam, and find the stress in each rod. Disregard the weight of the beam.
13. A simple beam, 18 feet long, carries a load of four tons. Draw the bending moment and shearing force diagrams: (a) when the load acts at the middle of the beam; (b) when it acts 5 feet from one of the ends. Disregard the weight of the beam.
14. A simple beam is 18 feet long and loaded with one ton evenly distributed along its span. Find the bending moment and the shearing force at a distance of 6 feet from one end and also at a distance of I foot from the middle. Disregard the weight of the beam.
15. On a common steelyard, a load of 1600 pounds is balanced by 360 pounds. Draw the diagrams of bending moment and shearing force in the steelyard bar, when thus loaded.
16. A countershaft, 6 feet long between centres of bearings, carries a driving pulley $A, 20$ inches diameter and distant I foot from the centre of the left-hand bearing, and a driven pulley $B, 18$ inches diameter and distant $3 \frac{1}{2}$ feet from A. In both cases, the belt-drive is horizontal, being toward the front at A and to the rear at B. The tension of the driving side at A is 200 pounds; at $B, 170$ pounds. The weight at A is 80 pounds ; at $B, 60$ pounds. Find the maximum equivalent bending moment on the shaft.
17. In Example 14, let the cranks be offset, the neutral axis of each making an angle of 120 degrees with the centre line of the shaft. With this modification, draw the moment diagrams throughout, as in Fig. 20.
18. In a 4 -cylinder, triple expansion engine, the high-pressure and intermediate-pressure cylinders are 32 and 52 inches, respectively, in diameter; the stroke is 48 inches; length of connecting rod, 96 inches ; the H.P. and I.P. cranks are 90 degrees apart, the H.P. leading; the initial, unbalanced pressure on the H.P. piston is 200 pounds per square inch; on the I.P. piston, 50 pounds; the length of each crank pin is 19 inches; and the average length of the three bearings - one at each end of the section of the shaft and one between the two pairs of cranks - is 24 inches. Find the maximum bending moment on the H.P. and I.P. section of the shaft, due to the loads on the two pistons and the corresponding reactions at the bearings.
19. Assume three concentrated loads, P_{1}, P_{2}, and P_{3}, spaced at the constant distance a between the first two loads and b between the second and third. Let this series of loads cross a beam of span s from left to right. Find the influence line for the left reaction.
20. Find the influence line for maximum shear for the series of loads, as above.
21. In Fig. 28, let there be two coupled locomotives crossing the plate girder bridge from left to right, the weights and spacing being those given in Example 15 and the locomotives being 9 feet apart. Find the maximum moments and shears.
22. Let the 5 -panel truss, Fig. 25, have a span of 125 feet and a depth of 26 feet. Take the live load as the two coupled locomotives in Problem 21, followed at a distance of 5 feet by a train weighing 5000 pounds per lineal foot. Determine the maximum stresses in the members and find in which panel or panels counterbracing is necessary.
23. Let the Warren girder, Fig. 31, have a 'broken' lower chord, the depth at joints 6 and 8 being 6 feet; at joints 4 and ro, 5 feet; and at joints 2 and 12,3 feet, 4 inches. Find the maximum live load stresses in the members, due to the load given in Example 16.
24. Find the centre of gravity of the deck beam whose dimensions are given in Example 20.
25. Find the centre of gravity of an angle with unequal legs, $7 \times 3 \frac{1}{2}$ inches by $\frac{7}{16}$ inch thick.
26. Find the rectangular moment of inertia of the bulb angle whose dimensions are given in Example 19. Take the neutral axis as perpendicular to the web and use the method of the area of the equilibrium polygon.
27. The cross-section of a channel has the following dimenșions: depth, 15 inches; area of section, 9.9 square inches; thickness of web, o. 4 inch; width of flange, 3.4 inches; thickness of flange, o.9, tapering to 0.4 inch; distance of centre of gravity from outside of web, 0.794 inch.

Find the moment of inertia : (a) with neutral axis perpendicular to web at centre ; (b) with neutral axis parallel with centre line of web.
28. A cast iron frame weighing 300 pounds is moved across a smooth iron floor plate by a force P acting at an angle of 45 degrees with the horizontal. Take the coefficient of friction as 0.4 and find the magnitude of P.
29. The joint between the two sections of a vertical pump rod is made by a through key having one horizontal side and one side
tapered to an angle of 3^{1} degrees with the horizontal. In making the joint, the total stress to be produced in the rod is 1000 pounds. Using a coefficient of friction of 0.25 , find the force which will be required to drive the key home.
30. The cover of a steam engine cylinder, 34^{1} inches in diameter is secured to the cylinder by thirty-four $\frac{1}{4}$-inch steel studs. Considering friction, what power, applied to the nut by a wrench 2 feet long, will produce a total stress in each nut of 4500 pounds?
31. Find the efficiency, at the mid-point of the forward stroke, of a double-acting, oscillating engine, disregarding the friction of the piston and piston rod. Data: Cylinder diameter, 15 inches; stroke, 18 inches; diameter of crank pin, $2 \frac{1}{2}$ inches; of trunnion, 6 inches; unbalanced pressure on piston, 100 pounds per square inch; coefficient of friction, 0.185 .
32. The shaft of a marine engine is transmitting 4000 horse power when revolving at a speed of 125 revolutions per minite, with the ship making 15 knots per hour. The thrust shaft has an external diameter of $13 \frac{3}{4}$ inches. There are II thrust collars, each 2 inches wide, working in a cast iron bearing lined with white metal. Assume - as was formerly the practice - that the collar bearing is continuous throughout its circumference, and, with a coefficient of friction of 0.1 , find the power expended in overcoming the friction of the thrust bearing.
33. Following the general methods given in Example 25, analyze the action of the Weston Differential Pulley Block or chain hoist. Take the coefficient of journal friction as 0.1, that of chain friction as 0.2 , and the ratio between the diameters of the two sheaves in the upper block as $\frac{10}{9}$.

Show the relation between the power and the load and the reasons for the large loss by friction. Prove that the tackle is selflocking with regard to backward motion.
34. In Example 26, let the pitch diameters of gear wheels A, B, and C be 6,8 , and $\mathbf{1 2}$ inches, respectively. Interpose a ro-inch
gear wheel between wheels B and C. Taking the force P as 75 pounds, the arm L as 8 inches, the arm L^{\prime} as 15 inches, the coefficient of journal friction as 0.1 , and that of tooth friction as 0.12 , find the magnitude of the resistance W.
35. In Fig. 52, interpose a belt-tightening pulley to the left of the slack side $\left(T_{1}\right)$ of the belt and near the driving pulley A, thus altering the line of action of the slack side and increasing its arcs of contact. With this modification, construct the force polygons for the entire gear by the methods used previously.

INDEX

Angle of friction, 136
Area, moment of inertia of, 121, 130 partial, centre of gravity of, 127
Axes of inertia, parallel, 120
Axis, friction, 149
neutral, 4 I

Beam, uniform load, 50
Beams, 41
Bellcrank, 10
Belt gearing, 155
Bending moment, 43, 84
maximum, 86
Bending and twisting moments, 49, 61, 65
Bending of ropes, 152
Bridge trusses, 82
Bulb angle, centre of gravity of, 125

Cantilever beams, 41
Centre of gravity, i Io
of bulb angle, 125
of partial area, 127
Centrifugal force, load due to, 52
Centroid of parallel forces, III, iI3, 124
Chain friction, 152
Character of stress, 25
Chord stresses, 87
Circle, friction, 145
Coefficient of friction, 135
Collar, friction of, 142
Cone, friction, 137
Continuous beams, 41, 56
Counterbracing, 81

Counter shaft, 61
Crane truss, 35
pillar, 16
Crank shaft, 65
Dead load, Pratt truss, 105
roof truss, 26
Warren girder, 99
Deck beam, moment of inertia of, 128
Diagonals, stresses in, 87
Diagrams, influence, 77
shear and moment, 44
stress, 24
Elastic curve, 4I
Engine, stationary, 14, 160
Equilibrium, conditions of, 9 polygon, 4
Equivalent moments, 49

Force polygon, 3
triangle, I
Framed structures, 23
Friction, 134
angle of, 136
axis of, 149
circle, 145
coefficient of, 135
cone, I 37
force of, 135
of chains, 152
of collars, 142
of gear teeth, 158
of journals, 145

Friction

of motion, 135
of pivots, 142
of plane surfaces, 137
of rest, 135
of screw jack, 164
of screw threads, 139
of stationary engine, 160
radius of, 145
rolling, 135
sliding, 135
Gear teeth, friction of, 158
Girder, stay, 56
Warren, 98
Gravity, centre of, 110, 127
Gyration, radius of, 115
Inertia, moment of, 115, 118, 121, 128, 130
Influence diagrams, 77
lines, 77
Journals, friction of, 146
Lines, influence, 77
Link connections, friction of, 149
Live load, 73
shear, 74,78
shear maximum, 8I
stresses, 87
Warren girder, 99
Load, dead, 27
snow, 27
uniform, 50, 52, 5^{6}
wind, 30
Loads on trusses, 24
Locomotive side rod, 52
wheel loads, 89, 124
Maximum bending moment, $86,89,98$
shear, $8 \mathrm{I}, 89,98$

Moment, bending, 43, 84, 86, 89, 98
diagrams, 44
equivalent, 49
of inertia, II_{5}
of inertia of area, 121, 130
of inertia of deck beam, 128
of inertia of parallel forces, 118
resisting, 43
scale, 47
twisting, 48
Motion, friction of, 135
Neutral axis, 41
Notation, truss, 27
Parallel axes of inertia, 120
forces, centroid of, III, II 3
forces, moment of inertia of, II8
Pawl and ratchet, II
Pillar crane, 16
Pivots, friction of, 142
Plane surfaces, friction of, 137
Plate girder bridge, 89
girder stresses, 87
Polygon, equilibrium, 4
force, 3
Pratt truss, 105
Pulley blocks, load vs. power, 167
Radius of friction, 145
of gyration, 115
Rachet, II
Ratchet-rack, 12
Resisting moment, 43
Rest, friction of, 135
Rolling friction, 135
Roof truss, dead load, 26
wind load, 30
Ropes, bending of, $\mathrm{I}_{5} 2$

Scale, moment, 47
Screw jack, friction of, 164
threads, friction of, 139
Shaft, centre crank, 65
counter, 6I
Shear diagrams, 44
live load, 74,78
maximum, 81, 89, 98
vertical, 4^{2}
Sheer legs, 20
Simple beam, 4I
Sliding friction, 135
Snow load, 27
Spur gear train, load vs. power, 173
Stationary engine, 14, 160
Stress, character of, 25
diagrams, 24
Supports, free, 4I
restrained, 4 I

Triangle, force, \mathbf{I}
Truss, bridge, 82
crane, 35
Pratt, 105
roof, dead load, 26
roof, wind load, 30
Warren, 98
Trusses, live load stresses, 87
Twisting and bending, 49, 61, 65
moments, 48

Uniform load, 50, 52, 56, 105

Vertical shear, 42
Verticals, stresses in, 107

Warren girder, 98
Wind load, 30

D. VAN NOSTRAND COMPANY

23 MURRAY AND 27 WARREN STREETS

 NEW YORK
SHORT-TITLE CATALOG

OF
TYutlicatioms ans \mathfrak{I} Inportatioms OF

SCIENTIFIC AND ENGINEERING BOOKS

This list includes the technical publications of the following English publishers :

> SCOTT, GREENWOOD \& CO CROSBY LOCKWOOD \& SON CONSTABLE \& COMPANY, Ltd TRCHHNCAL PUBLISHING CO. ELECTRICIAN PRINTING \& PUBLISHING Co.,
for whom D. Van Nostrand Company are American agents.
Descriptive Circulars sent on request.

SHORT-TITLE CATALOG

OF THE

Publications and Importations

0F

D. VAN NOSTRAND COMPANY
23 MURŔAY AND 27 WARREN STREETS, N. Y.

Prices marked with an asterisk (*) are NET All bindings are in cloth unless otherwise noted
A B C Code. (See Clausen-Thue.)
Abbott, A. V. The Electrical Transmission of Energy. 8vo, *\$5 00

- A Treatise on Fuel. (Science Series No. 9.) 16 mo , 050
-_Testing Machines. (Science Series No. 74.)......... 16mo, o 50
Adam, P. Practical Bookbinding. Trans. by T. E. Maw. i2mo, *2 50
Adams, J. W. Sewers and Drains for Populous Districts.. . .8vo, 250
Addyman, F. T. Practical X-Ray Work 8vo, *4 oo
Ai Code. (See Clausen-Thue.)
Aikman, C. M. Manures and the Principles of Manuring. . .8vo, 250
Alexander, J. H. Elementary Electrical Engineering.12mo, 200
- Universal Dictionary of Weights and Measures....... 8vo, 350
Allan, W. Strength of Beams under Transverse Loads. (Science Series No. 19.)............................ . . 6 mom , - 50
- Theory of Arches. (Science Series No. 11.) 16 mo , 050
Allen, H. Modern Power Gas Producer Practice and Applica- tions. $12 \mathrm{mo},{ }^{*} 250$
-Gas and Oil Engines. 8vo, *4 50
Anderson, F. A. Boiler Feed Water 8vo, ${ }^{*} 50$
Anderson, Cap. G. L. Handbook for the Use of Electricians .8vo, 300
Anderson, J. W. Prospector's Handbook 12 mo , I 50
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 3
Andes, L. Vegetable Fats and Oils. 8vo,
*4 00
——Animal Fats and Oils. Trans. by C. Salter 8vo,
*4 oo
——Drying Oils, Boiled Oil, and Solid and Liquid Driers. 8vo, *5 oo
—— Iron Corrosion, Anti-fouling and Anti-corrosive Paints. Trans. by C. Salter $8 \mathrm{vo},{ }^{*} 4$ oo
Oil Colors and Printers' Ink. Trans. by A. Morris and H. Robson 8 vo , *2 50
—— Treatment of Paper for Special Purposes. Trans. by C. Salter I 2mo, *2 50
Annual Reports on the Progress of Chemistry.
Vol. I. (1904) *2 00
Vol. II. (1905) *2 00
Vol. III. (1906) *2 00
Vol. IV. (1907) *2 00
Vol. V. (1908) ${ }^{*} 200$
Vol. VI. (r909) ${ }^{*} 200$
Argand, M. Imaginary Quantities. Translated from the French by A. S. Hardy. (Science Series No. 52.)........16mo, o 50Armstrong, R., and Idell, F. E. Chimneys for Furnaces andSteam Boilers. (Science Series No. r.).......... r6mo,o 50
Arnold, E. Armature Windings of Direct Current Dynamos. Trans. by F. B. DeGress 8vo, *2 00
Ashe, S. W., and Keiley, J. D. Electric Railways. Theoreti- cally and Practically Treated. Vol. I. Rolling Stock 12 mo , *2 50
Ashe, S. W. Electric Railways. Vol. II. Engineering Pre- liminaries and Direct Current Sub-Stations. 12mo, *2 50
——Electricity: Experimentally and Practically Applied. 12 mo , *2 00
Atkinson, A. A. Electrical and Magnetic Calculations 8vo, *I 50
Atkinson, J. J. Friction of Air in Mines. (Science Series No. 14.) 16mo, o 50
Atkinson, J. J., and Williams, E. H., Jr. Gases Met with in Coal Mines. (Science Series No. 13.).............r6mo, - 50
Atkinson, P. The Elements of Electric Lighting.......... 2 mo, I 50
—— The Elements of Dynamic Electricity and Magnetism. I2mo, 200
- Power Transmitted by Electricity. I2mo, 200
Auchincloss, W. S. Link and Valve Motions Simplified 8vo, * 50
Ayrton, H. The Electric Arc 8vo, *5 00
Bacon, F. W. Treatise on the Richards Steam-Engine Indica- tor 12mo,

100
Bailes, G. M. Modern Mining Practice. Five Volumes.8vo, each,

350
Bailey, R. D. The Brewers' Analyst . 8vo,
Baker, A. L. Quaternions. 12 mo ,
Baker, Benj. Pressure of Earthwork. (Science Series No. 56.) 16 mo ,
Baker, I. O. Levelling. (Science Series No. 9I.).......... 16mo, *5 00

Baker, M. N. Potable Water. (Science Series)............ 6 mo, __ Sewerage and Sewage Purification. (Science Series No. 18.) 16 mo , o 50
Baker, T. T. Telegraphic Transmission of Photographs.. 12 mo , * 25
Bale, G. R. Modern Iron Foundry Practice. Two Volumes.
12 mo .
Vol. I. Foundry Equipment, Material Used *2 50
Vol. II. Machine Moulding and Moulding Machines. * 50
Bale, M. P. Pumps and Pumping I 50
Ball, R. S. Popular Guide to the Heavens *4 50
—— Natural Sources of Power. (Westminster Series) ${ }^{*} 200$
Ball, W. V. Law Affecting Engineers *3 50
Bankson, Lloyd. Slide Valve Diagrams. (Science Series No. 108.) 16 mo , o 50
Barba, J. Use of Steel for Constructive Purposes. 12 mo , I 00
Barker, A. Textiles and Their Manufacture. (Wetsminster Series) 8vo, 200
Barker, A. H. Grapic Methods of Engine Design I2mo,
Barnard, F. A. P. Report on Machinery and Processes of the Industrial Arts and Apparatus of the Exact Sciences at the Paris Universal Exposition, 1867 8vo, 500
Barnard, J. H. The Naval Miliatiaman's Guide.. 16 mo , leather, I 25
Barnard, Major J. G. Rotary Motion. (Science Series No. 90.)
16 mo ,
Barrus, G. H. Boiler Tests 8vo,
Engine Tests 8vo,
The above two purchased together *6 00* 50
Barwise, S. The Purification of Sewage 350
Baterden, J. R. Timber. (Westmenster Series) 8vo ${ }^{*} 200$
Bates, E. L., and Charlesworth, F. Practical Mathematics andGeometry for Technical Students12 mo ,* ${ }_{50}$
D. VAN NOST'RAND COMPANY'S SHORT-TITLE CATALOG 5
Beadle, C. Chapters on Papermaking. Five Volumes 12mo, each, $*_{2}$ oo
Beaumont, R. Color in Woven Design 8vo, 750
-- Finishing of Textile Fabrics 8vo, *4 oo
Beaumont, W. W. The Steam-Engine Indicator 8vo, 250
Bedell, F., and Pierce, C. A. Direct and Alternating Current Testing 8vo, *2 oo
Beech, F. Dyeing of Cotton Fabrics *3 00

- Dyeing of Woolen Fabrics 8vo, *3 50
Beckwith, A. Pottery 8vo, paper, - 60
Begtrup, J. The Slide Valve $8 \mathrm{vo}, *_{2} 00$
Bender, C. E. Continuous Bridges. (Science Series No. 26.)
16 mo , 50
Proportions of Piers used in Bridges. (Science Series No. 4.)
r6mo, o 50
Bennett, H.G. The Manufacture of Leather *2 50
Berry, W. J. Differential Equations of the First Species. 12mo (In Preparation.)
Bersch, J. Manufacture of Mineral and Lake Pigments. Trans. by A. C. Wright *5 00
Bertin, L. E. Marine Boilers. Trans. by L. S. Robertson. . 8vo, 500
Beveridge, J. Papermaker's Pocket Book 12 mo , ${ }^{*} 4$ oo
Binns, C. F. Ceramic Technology 8vo, *5 oo
—— Manual of Practical Potting. 8vo, ${ }^{*} 750$
—— The Potter's Craft 12 mo, *2 $_{2} 00$
Birchmore, W. H. How to Use a Gas Analysis *I 25
Blaine, R. G. The Calculus and Its Applications. ${ }^{*}{ }^{1} 50$
Blake, W. H. Brewers' Vade Mecum * 4 oo
Blake, W. P. Report upon the Precious Metals 200
Bligh, W. G. The Practical Design of Irrigation Works *6 oo
Blyth, A. W. Foods: Their Composition and Analysis. 750
- Poisons: Their Effects and Detection 750
Böckmann, F. Celluloid 250
Bodmer, G. R. Hydraulic Motors and Turbines. 5 oo
Boileau, J. T. Traverse Tables. 500
Bonney, G. E. The Electro-platers' Handbook 120
Booth, W. H. Water Softening and Treatment $8 \mathrm{vo}, *_{2} 50$
Booth, W. H. Superheaters and Superheating and their Con- trol 8vo, * 50
Bottcher, A. Cranes: Their Construction, Mechanical Equip- ment and Working. Trans. by A. Tolhausen....4to, * 1000
Bottler, M. Modern Bleaching Agents. Trans. by C. Salter 12 mo , *2 50
Bottone, S. R. Magnetos for Automobilists. 12 mo , * 1 oo
Boulton, S. B. Preservation of Timber. (Science Series No.
82.) 16 mo , o 50
Bourgougnon, A. Physical Problems. (Science Series No. II3.) 16 mo , o 50
Bourry, E. Treatise on Ceramic Industries. Trans. by W. P. Rix. 8vo (In Press.)
Bow, R. H. A Treatise on Bracing 8vo, I 50
Bowie, A. J., Jr. A Practical Treatise on Hydraulic Mining. 8vo, 500
Bowker, W. R. Dynamo Motor and Switchboard Circuits. . 8vo, *2 50
Bowles, O. Tables of Common Rocks. (Science Series) .16mo, o 50
Bowser, E. A. Elementary Treatise on Analytic Geometry. i2mo, I 75
--Elementary Treatise on the Differential and Integral Calculus 225
- Elementary Treatise on Analytic Mechanics 300
- Elementary Treatise on Hydro-mechanics 250
- A Treatise on Roofs and Bridges. *2 25
Boycott, G. W. M. Compressed Air Work and Diving * 4 oo
Bragg, E. M. Marine Engine Design ${ }^{*} 20$
Brainard, F. R. The Sextant. (Science Series No. 1or.).16mo, Brassey's Naval Annual for 1910 *6 oo
Brew, W. Three-Phase Transmission *2 oo
Brewer, R. W. A. The Motor Car. *2 00
Briggs, R., and Wolff, A. R. Steam-Heating. (Science Series No. 67.). 6 mo , 50
Bright, C. The Life Story of Sir Charles Tilson Bright 8vo, *4 50British Standard Sections.....................................8xi5 *i ooComplete list of this series (45 parts) sent on application.
Broughton, H. H. Electric Cranes and Hoists (In Press.)Brown, G. Healthy Foundations. (Science Series No. 8o.)
16mo, o 50
Brown, H. Irrigation $.8 \mathrm{vo},{ }^{*} 500$Brown, Wm. N. The Art of Enamelling on Metal.12mo, ${ }^{*}$ i oo
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 7
Brown, Wm. N. Handbook on Japanning and Enamelling.r2mo, ——House Decorating and Painting. 12 mo , * 50
* 50
—— History of Decorative Art 12 mo *I 25
——Dipping, Burnishing, Lacquering and Bronzing Brass Ware I2mo, * 1 oo
—— Workshop Wrinkles 8vo,
Browne, R.E. Water Meters. (Science Series No. 8r.). 16mo, o 50
Bruce, E. M. Pure Food Tests 12 mo , * 25
Bruhns, Dr. New Manual of Logarithms........8vo, half mor., 250
Brunner, R. Manufacture of Lubricants, Shoe Polishes and Leather Dressings. Trans. by C. Salter 8vo, *3 oo
Buel, R. H. Safety Valves. (Science Series No. 21.)....6rmo, o 50
Bulmann, H. F., and Redmayne, R. S. A. Colliery Working and Management 8vo, 6 oo
Burgh, N. P. Modern Marine Engineering4to, half mor., 10 00
Burt, W. A. Key to the Solar Compass. 16mo, leather, 250
Burton, F. G. Engineering Estimates and Cost Accounts.
12 mo , * 150
Buskett, E. W. Fire Assaying 12 mo , * 125
Cain, W. Brief Course in the Calculus * 75
- Elastic Arches. (Science Series No. 48.). 16mo, - 50
- Maximum Stresses. (Science Series No. 38.). 16 mo , o 50
Practical Designing Retaining of Walls. (Science Series No. 3.). 16 mo , o 50
—— Theory of Steel-concrete Arches and of Vaulted Structures. (Science Series) 16 mo , - 50
——Theory of Voussoir Arches. (Science Series No. 12.) 16mo, - 50
- Symbolic Algebra. (Science Series No. 73.) 16 mo , o 50
Campin, F. The Construction of Iron Roofs 200
Carpenter, F. D. Geographical Surveying. (Science Series No. 37.). 16 mo ,
Carpenter, R. C., and Diederichs, H. Internal-Combustion Engines 8vo,
*5 00
Carter, E. T. Motive Power and Gearing for Electrical Machin- ery....................................... . 8vo, *5 oo
Carter, H. A. Ramie (Rhea), China Grass *2 00
Carter, H. R. Modern Flax, Hemp, and Jute Spinning. 8vo, *3 oo
Cathcart, W. L. Machine Design. Part I. Fastenings 8vo, *3 о
Cathcart, W. L., and Chaffee, J. I. Elements of Graphic Statics. 8vo, *3 oo
Caven, R. M., and Lander, G. D. Systematic Inorganic Chemis- *2 00
Chambers' Mathematical Tables. I 75
Charnock, G. F. Workshop Practice. (Westminster Series.) 8vo (In Press.)
Charpentier, P. Timber *6 oo
Chatley, H. Principles and Designs of Aeroplanes. (Science Series.) o 50
_- How to Use Water Power * 100
Child, C. T. The How and Why of Electricity I 00
Christie, W. W. Boiler-waters, Scale, Corrosion, Foaming.8vo, *3 оо
- Chimney Design and Theory 8vo, *3 oo
- Furnace Draft. (Science Series) 16mo, - 50
Church's Laboratory Guide. Rewritten by Edward Kinch. .8vo, *2 50
Clapperton, G. Practical Papermaking. 8vo, 250
Clark, C. H. Marine Gas Engines (In Press.)
Clark, D. K. Rules, Tables and Data for Mechanical Engineers
8vo, 500
- Fuel: Its Combustion and Economy. I 50
- The Mechanical Engineer's Pocketbook 16 mo , 200
- Tramways: Their Construction and Working. 8vo, 750
Clark, J. M. New System of Laying Out Railway Turnouts.
I 00Clausen-Thue, W. A B C Telegraphic Code. Fourth Edition
Clausen-Thue, W. A B C Telegraphic Code. Fourth Edition 12mo, *5 oo
Fifth Edition $8 \mathrm{vo},{ }^{*} 7$ oo
—— The Ar Telegraphic Code *7 50
Cleemann, T. M. The Railroad Engineer's Practice * 150
Clerk, D., and Idell, F. E. Theory of the Gas Engine. (Science Series No. 62.). 6 mo , o 50
Clevenger, S. R. Treatise on the Method of Government Sur- veying..................................... 16mo, mor., 250
Clouth, F. Rubber, Gutta-Percha, and Balata 8vo, *5 00
Coffin, J. H. C. Navigation and Nautical Astronomy *3 50
Colburn, Z., and Thurston, R. H. Steam Boiler Explosions. (Science Series No. 2.)............................ . . . 6 mo , - 50
Cole, R. S. Treatise on Photographic Optics. 12mo, I 50
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 9
Coles-Finch, W. Water, Its Origin and Use 8vo *5 00
Collins, J. E. Useful Alloys and Memoranda for Goldsmiths, Jewelers. 16mo, o 50
Constantine, E. Marine Engineers, Their Qualifications and Duties... . . 8vo, *2 00
Coombs, H. A. Gear Teeth. (Science Series No. 120)...r6mo, o 50
Cooper, W. R. Primary Batteries *4 oo
_- " The Electrician " Primers 8vo, *5 oo
Copperthwaite, W. C. Tunnel Shields 4to, *9 00
Corey, H. T. Water Supply Engineering 8vo (In Press.)
Corfield, W. H. Dwelling Houses. (Science Series No. 50.)
16mo, 50
——Water and Water-Supply. (Science Series No. 17.)..16mo, o 50
Cornwall, H. B. Manual of Blow-pipe Analysis $8 \mathrm{vo},{ }^{*} 50$
Courtney, C. F. Masonry Dams 350
Cowell, W. B. Pure Air, Ozone, and Water 12 mo , ${ }^{*} 200$
Craig, T. Motion of a Solid in a Fuel. (Science Series No. 49.)
16mo, o 50
——Wave and Vortex Motion. (Science Series No. 43.). 16mo, o 50Cramp, W. Continuous Current Machine Design..........8vo, ${ }^{2} 50$Crocker, F. B. Electric Lighting. Two Volumes. 8vo.
Vol. I. The Generating Plant 300
Vol. II. Distributing Systems and Lamps 300
Crocker, F. B., and Arendt, M. Electric Motors *2 50
Crocker, F. B., and Wheeler, S. S. The Management of Electri- cal Machinery r2mo, *I 00
Cross, C. F., Bevan, E. J., and Sindall, R. W. Wood Puly and Its Applications. (Westminster Series.) 8vo (In Press.)
Crosskey, L. R. Elementary Prospective..................... 8vo, r 00
Crosskey, L. R., and Thaw, J. Advanced Perspective r 50
Culley, J. L. Theory of Arches. (Science Series No. 87.) 6 mo, - 50
Davenport, C. The Book. (Westminster Series.)........ .8vo, *2 oo
Davies, D. C. Metalliferous Minerals and Mining 500
——Earthy Minerals and Mining 500
Davies, E. H. Machinery for Metalliferous Mines. 800
Davies, F. H. Electric Power and Traction ${ }^{*} 200$
Dawson, P. Electric Traction on Railways *9 0
Day, C. The Indicator and Its Diagrams 12 mo , *2 0
Deerr, N. Sugar and the Sugar Cane *3 00
Deite, C. Manual of Soapmaking. Trans. by S. T. King .-4to, *5 00
De la Coux, H. The Industrial Uses of Water. Trans. by A. Morris 8vo,
Del Mar, W. A. Electric Power Conductors 8vo, ${ }^{2}$ oo
Denny, G. A. Deep-Level Mines of the Rand 4to, *io oo
- Diamond Drilling for Gold *5 00
De Roos, J. D. C. Linkages. (Science Series No. 47.)...16mo, - 50
De Varona, A. Sewer Gases. (Science Series No. 55.)... 16mo, o 50
Derr, W. L. Block Signal Operation Oblong 12 mo , * 50
Desaint, A. Three Hundred Shades and How to Mix Them..8vo, *io oo
Dibdin, W. J. Public Lighting by Gas and Electricity 8vo, *8 oo
-- Purification of Sewage and Water 8vo, 650
Dietrich, K. Analysis of Resins, Balsams, and Gum Resins .8vo, *3 ooDinger, Lieut. H. C. Care and Operation of Naval Machinery12mo. *2 oo
Dixon, D. B. Machinist's and Steam Engineer's Practical Cal- culator 16mo, mor., 1 25
Doble, W. A. Power Plant Construction on the Pacific Coast.
(In Press.)
Dodd, G. Dictionary of Manufactures, Mining, Machinery, and the Industrial Arts. 150
Dorr, B. F. The Surveyor's Guide and Pocket Table-book.
16mo, mor., 200
Down, P. B. Handy Copper Wire Table 16 mo , ${ }^{*} 100$
Draper, C. H. Elementary Text-book of Light, Heat and Sound 12 mo , 100
——Heat and the Principles of Thermo-dynamics........I2mo, 150
Duckwall, E. W. Canning and Preserving of Food Products.8vo, *5 00
Dumesny, P., and Noyer, J. Wood Products, Distillates, and Extracts 8vo, *4 50
Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries... . . 8vo, * 400
Duthie, A. L. Decorative Glass Processes. (Westminster Series) 8vo, *2 oo
Dyson, S. S. Practical Testing of Raw Materials $8 \mathrm{vo},{ }^{*} 5$ oo
Eccles, R. G., and Duckwall, E. W. Food Preservatives8vo, 100
Eddy, H. T. Researches in Graphical Statics 150
- Maximum Stresses under Concentrated Loads I 50
Edgcumbe, K. Industrial Electrical Measuring Instruments.
$8 \mathrm{vo}, *_{2} 50$
Eissler, M. The Metallurgy of Gold 750
——The Hydrometallurgy of Copper * 450
——The Metallurgy of Silver 400
- The Metallurgy of Argentiferous Lead. 500
-- Cyanide Process for the Extraction of Gold 300
- A Handbook of Modern Explosives 500
Ekin, T. C. Water Pipe and Sewage Discharge Diagrams . .folio, *3 00
Eliot, C. W., and Storer, F. H. Compendious Manual of Qualita- tive Chemical Analysis I2mo, * 25
Elliot, Major G. H. European Light-house Systems. 8vo, 500
Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, *4 00
-- Applied Thermodynamics. 8vo, *4 50
- Flying Machines To-day i2mo (In Preparation.)
Erfurt, J. Dyeing of Paper Pulp. Trans. by J. Hubner...8vo, *7 50
Erskine-Murray, J. A Handbook of Wireless Telegraphy..8vo, *3 50
Evans, C. A. Macadamized Roads (In Press.)
Ewing, A. J. Magnetic Induction in Iron 8vo, *4 oo
Fairie, J. Notes on Lead Ores 12 mo , *i 00
- Notes on Pottery Clays 12 mo , * 50
Fairley, W., and Andre, Geo. J. Ventilation of Coal Mines. (Science Series No. 58.) 16 mo , o 50
Fairweather, W. C. Foreign and Colonial Patent Laws ...8vo, *3 oo
Fanning, T. T. Hydraulic and Water-supply Engineering.
$8 \mathrm{vo},{ }^{*} 5$ oo
Fauth, P. The Moon in Modern Astronomy. Trans. by J. McCabe... 8 vo, * $_{2}$ oo
Fay, I. W. The Coal-tar Colors .8vo (In Press.)
Fernbach, R. L. Glue and Gelatine ${ }^{*} 3$ oo
Fischer, E. The Preparation of Organic Compounds. Trans. by R. V. Stanford . 12 mo , *I 25
Fish, J. C. L. Lettering of Working Drawings..... Oblong 8vo, I 00
Fisher, H. K. C., and Darby, W. C. Submarine Cable Testing.$8 \mathrm{vo},{ }^{*} 350$
Fiske, Lieut. B. A. Electricity in Theory and Practice .8vo, 250
Fleischmann, W. The Book of the Dairy. Trans. by C. M. Aikman 8vo, 400
Fleming, J. A. The Alternate-current Transformer. TwoVolumes8vo,
Vol. I. The Induction of Electric Currents. *5 oo
Vol. II. The Utilization of Induced Currents *5 00
——Centenary of the Electrical Current $8 \mathrm{vo},{ }^{*} \mathrm{O} 50$
—— Electric Lamps and Electric Lighting 8vo, *3 oo
——Electric Laboratory Notes and Forms 4to, ${ }^{5}$ oo
- A Handbook for the Electrical Laboratory and Testing Room. 'Two Volumes 8vo, each, *5 oo
Fluery, H. The Calculus Without Limits or Infinitesimals. Trans. by C. O. Mailloux. (In Press.)
Flynn, P. J. Flow of Water. (Science Series No. 84.)...16mo, 050
——Hydraulic Tables. (Science Series No. 66.) 16 mo, - 50
Foley, N. British and American Customary and Metric Meas- ures *3 00
Foster, H. A. Electrical Engineers' Pocket-book. (Sixth Edition.).................................... 12 mo , leather, 500
Foster, Gen. J. G. Submarine Blasting in Boston (Mass.) Harbor 350
Fowle, F. F. Overhead Transmission Line Crossings * 50
——The Solution of Alternating Current Problems.
8vo (In Press.)
Fox, W. G. Transition Curves. (Science Series No. IIo.).16mo, o 50
Fox, W., and Thomas, C. W. Practical Course in Mechanical Drawing I 2mo, 125
Foye, J. C. Chemical Problems. (Science Series No. 69.).r6mo, - 50
-Handbook of Mineralogy. (Science Series No. 86.).. I6mo, o 50
Francis, J. B. Lowell Hydraulic Experiments 4to, 1500
Frye, A. I. Civil Engineers' Pocket-book (In Press.)
Fuller, G. W. Investigations into the Purification of the Ohio
River 4to, *io oo
Furnell, J. Paints, Colors, Oils, and Varnishes 8 vo, *i 0
Gant, L. W. Elements of Electric Traction 8vo, $*_{2} 50$
Garcke, E., and Fells, J. M. Factory Accounts. 300
Garforth, W. E. Rules for Recovering Coal Mines after Explo- sions and Fires 12 mo , leather, I 50
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 13
Gaudard, J. Foundations. (Science Series No. 34.).....16mo, o 50
Gear, H. B., and Williams, P. F. Electric Central Station Dis-tributing Systems........................ . . 8vo (In Preparation.)
Geerligs, H. C. P. Cane Sugar and Its Manufacture 8vo, *5 00
Geikie, J. Structural and Field Geology ${ }^{*} 4$ oo
Gerber, N. Analysis of Milk, Condensed Milk, and Infants' Milk-Food 8vo, 1 25
Gerhard, W. P. Sanitation, Water-supply and Sewage Disposal of Country Houses 12 mo *2 00
- Gas Lighting. (Science Series No. IIr.) 16mo, o 50
——Household Wastes. (Science Series No. 97.) 16mo, o 50
- House Drainage. (Science Series No. 63.) 16mo, o 50
——Sanitary Drainage of Buildings. (Science Series No. 93.)
16 mo 050
Gerhardi, C. W. H. Electricity Meters * 4 oo
Geschwind, L. Manufacture of Alum and Sulphates. Trans. by C. Salter *5 oo
Gibbs, W. E. Lighting by Acetylene * 150
—— Physics of Solids and Fluids. (Carnegie Technical Schools Text-books.) * 50
Gibson, A. H. Hydraulics and Its Application *5 00
- Water Hammer in Hydraulic Pipe Lines 12 mo , *2 00
Gilbreth, F. B. Motion Study. A Method for Increasing the Efficiency of the Workman 12 mo , *2 00
Gillmore, Gen. Q. A. Limes, Hydraulic Cements and Mortars.
$8 \mathrm{vo}, 4$ oo
Roads, Streets, and Pavements 12mo, 200
Golding, H. A. The Theta-Phi Diagram 12mo, *I 25
Goldschmidt, R. Alternating Current Commutator Motor .8vo, *3 oo
Goodchild, W. Precious Stones. (Westminster Series.)...8vo, *2 00
Goodeve, T. M. Textbook on the Steam-engine 200
Gore, G. Electrolytic Separation of Metals *3 50
Gould, E. S. Arithmetic of the Steam-engine. 100
——Calculus. (Science Series No. i12.) 050
- High Masonry Dams. (Science Series No. 22.) 16mo, - 50
- Practical Hydrostatics and Hydrostatic Formulas. (Science Series.) $16 \mathrm{mo}, \quad 050$
Grant, J. Brewing and Distilling. (Westminster Series.) 8vo (In Press.)Gray, J. Electrical Influence Machines$12 \mathrm{mo}, 200$
Greenwood, E. Classified Guide to Technical and Commercial Books .8vo, *3 oo
Gregorius, R. Mineral Wazes. Trans. by C. Salter......I2mo, *3 00
Griffiths, A. B. A Treatise on Manures. 12 mo , 300
- Dental Metallurgy 8vo, *3 50
Gross, E. Hops $8 \mathrm{vo},{ }_{4} 50$
Grossman, J. Ammonia and its Compounds. 12 mo , * 25
Groth, L. A. Welding and Cutting Metals by Gases or Electric- ity. 8vo,
Grover, F. Modern Gas and Oil Engines 8vo, *2 oo
Gruner, A. Power-loom Weaving $8 \mathrm{vo},{ }^{*} 3$ oo
Güldner, Hugo. Internal-Combustion Engines. Trans. by H. Diedrichs 4to, *io oo
Gunther, C. O. Integration * 25
Gurden, R. L. Traverse Tables folio, half mor. 750
Guy, A. E. Experiments on the Flexure of Beams. 8 vo, * $^{2} 25$
Haeder, H. Handbook on the Steam-engine. Trans. by H. H. P. Powles. 12 mo , 300Hainbach, R. Pottery Decoration. Trans. by C. Slater. I2mo, ${ }^{*} 3$ oo
Hale, W. J. Calculations of General Chemistry..........12mo, *i 00
Hall, C. H. Chemistry of Paints and Paint Vehicles......12mo, ${ }_{2}$ oo
Hall, R. H. Governors and Governing Mechanism.I2mo, ${ }^{*} 200$
Hall, W. S. Elements of the Differential and Integral Calculus
$8 \mathrm{vo}, *_{2} 25$
Descriptive Geometry 8 vo volume and 4 to atlas, *3 50
Haller, G. F., and Cunningham, E. T. The Tesla Conl......I2mo, *I 25
Halsey, F. A. Slide Valve Gears. I 50
- The Use of the Slide Rule. (Science Series.). o 50
-Worm and Spiral Gearing. (Science Series.). - 50
Hamilton, W. G. Useful Information for Railway Men.. I6mo, I 00
Hammer, W. J. Radium and Other Radioactive Substances, 8vo, * 100
Hancock, H. Textbook of Mechanics and Hydrostatics. . . . 8vo, 150
Hardy, E. Elementary Principles of Graphic Statics..... I2mo, * 150
Harper, W. B. Utilization of Wood Waste by Distillation. . 4to, *3 00
Harrison, W. B. The Mechanics' Tool-book. 12 mo , I 50
Hart, J. W. External Plumbing Work. $8 \mathrm{vo},{ }^{*} 3$ oo
- Hints to Plumbers on Joint Wiping. $8 \mathrm{vo},{ }^{*} 3$ oo
- Principles of Hot Water Supply. 8vo, *3 oo
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 15
Hart, J. W. Sanitary Plumbing and Drainage. 8vo, *3 оо
Haskins, C. H. The Galvanometer and Its Uses........... 16mo, I 50
Hatt, J. A. H. The Colorist. square 12 mo , * 50
Hausbrand, E. Drying by Means of Air and Steam. Trans. by A. C. Wright. $12 m o$, ${ }^{*} 200$
——Evaporing, Condensing and Cooling Apparatus. Trans. by A. C. Wright 8vo, *5 oo
Hausner, A. Manufacture of Preserved Foods and Sweetmeats. Trans. by A. Morris and H. Robson. 8vo, *3 оо
Hawke, W. H. Premier Cipher Telegraphic Code *5 00
- roo,000 Words Supplement to the Premier Code. 4to, *5 oo
Hawkesworth, J. Graphical Handbook for Reniforced Concrete Design. * 250
Hay, A. Alternating Currents *2 50
- Principles of Alternate-current Working 200
—— Electrical Distributing Networks and Distributing Lines.8vo, *3 50
- Continuous Current Engineering. 8 vo , *2 50
Heap, Major D. P. Electrical Appliances 8vo, 200
Heaviside, O. Electromagnetic Theory. Two volumes. 8 vo , each, *5 oo
Heck, R. C. H. Steam-Engine and Other Steam Motors. Two Volumes.
Vol. I. Thermodynamics and the Mechanics. 8vo, *3 50
Vol. II. Form, Construction and Working 8vo, *5 00
-- Abridged edition of above volumes (Elementary)
8vo (In Preparation)
- Notes on Elementary Kinematics. 8 vo , boards, * 100
- Graphics of Machine Forces. 8vo, boards, * 1 oo
Hedges, K. Modern Lightning Conductors. 300
Heermann, P. Dyers' Materials. Trans. by A. C. Wright. 12 mo , *2 50
Hellot, Macquer and D'Apligny. Art of Dyeing Wool, Silk and Cotton. 8vo, *2 00
Henrici, O. Skeleton Structures. 8vo, r- 50
Hermann, F. Painting on Glass and Porcelain. 8vo, *3 50
Hermann, G. The Graphical Statics of Mechanism. Trans. by A. P. Smith. 12mo, 200
Herzfeld, J. Testing of Yarns and Textile Fabrics. 8vo, *3 50
Hildebrandt, A. Airships, Past and Present 8vo, *3 50
Hildenbrand, B. W. Cable-Making. (Science Series No.. 32.) $16 \mathrm{mo}, \quad 0 \quad 50$
Hildrich, H. Short History of Chemistry (In Press.)
Hill, J. W. The Purification of Public Water Supplies. NewEdition..(In Press.)
- Interpretation of Water Analysis (In Press.)
Hiroi, I. Plate Girder Construction. (Science Series No. 95.)
16mo, - 50
- Statically-Indeterminate Stresses 12 mo , *2 00
Hirshfeld, C. F. Engineering Thermodynamics. (Science Series.) 16 mo , 050
Hobart, H. M. Heavy Electrical Engineering. $8 \mathrm{vo},{ }^{*} 450$
- Electricity 8vo, *2 oo
- Electric Trains. 8vo, *2 50
Hobbs, W. R. P. The Arithmetic of Electrical Measurements
$12 \mathrm{mo}, 050$
Hoff, J. N. Paint and Varnish Facts and Formulas.12mo, *I 50
Hoff, Com.W. B. The Avoidance of Collisions at Sea. 16mo, mor., o 75
Hole, W. The Distribution of Gas 8vo, 50
Holley, A. L. Railway Practice folio, 1200
Holmes, A. B. The Electric Light Popularly Explained. 12 mo , paper, o 50
Hopkins, N. M. Experimental Electrochemistry. $.8 \mathrm{vo},{ }^{*} 300$
- Model Engines and Small Boats 125
Hopkinson, J., Shoolbred, J. N., and Day, R. E. Dynamic Electricity. (Science Series No. 7r.).............. 6 mo , - 50
Horner, J. Engineers' Turning .8vo, *3 50
- Metal Turning. 12mo, 150
-Toothed Gearing I2mo, 225
Houghton, C. E. The Elements of Mechanics of Materials.i2mo, *2 00
Houllevigue, L. The Evolution of the Sciences. $.8 \mathrm{vo}, *_{2}$ oo
Howe, G. Mathematics for the Practical Man. * 25
Howorth, J. Repairing and Riveting Glass, China and Earthen- ware....................................... . . 8vo, paper, *o 50
Hubbard, E. The Utilization of Wood-waste 8vo, *2 50
Humber, W. Calculation of Strains in Girders. $12 \mathrm{mo}, 250$
Humphreys, A. C. The Business Features of Engineering Practice 8 vo, * 25
Hurst, G. H. Handbook of the Theory of Color. 8vo, *2 50
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 17
Hurst, G.H. Dictionary of Chemicals and Raw Products..8vo, *3 00
- Lubricating Oils, Fats and Greases. $8 \mathrm{vo},{ }^{*} 3$ oo
-Soaps $8 \mathrm{vo},{ }^{*} 5$ oo
-Textile Soaps and Oils $8 \mathrm{vo},{ }_{2} 50$
Hurst, H. E., and Lattey, R. T. Text-book of Physics. 8vo, ${ }^{*} 3$ оо
Hutchinson, R. W., Jr. Long Distance Electric Power Trans- mission. 12 mo , *3 oo
Hutchinson, R. W., Jr., and Ihlseng, M. C. Electricity in Mining. 12 mo (In Press.)Hutchinson, W. B. Patents and How to Make Money Out ofThem. 12 mo ,1 25
Hutton, W. S. Steam-boiler Construction. 8vo, 6 oo
- Practical Engineer's Handbook. 8vo, 7 оо
- The Works' Manager's Handbook. 8vo, 6 oo
Hyde, E. W. Skew Arches. (Science Series No. 15.).....16mo, 050
Induction Coils. (Science Series No. 53.) $16 \mathrm{mo}, 050$
Ingle, H. Manual of Agricultural Chemistry. 8vo, *3 oo
Innes, C. H. Problems in Machine Design. $12 \mathrm{mo},{ }_{2}$ oo
- Air Compressors and Blowing Engines. $12 \mathrm{mo},{ }_{2} 00$
- Centrifugal Pumps. $12 \mathrm{mo},{ }_{2} 00$
- The Fan $12 \mathrm{mo},{ }_{2}$ oo
Isherwood, B. F. Engineering Precedents for Steam Machinery
$8 \mathrm{vo}, 250$
Ivatts, E. B. Railway Management at Stations $8 \mathrm{vo}, *_{2} 50$
Jacob, A., and Gould, E. S. On the Designing and Construction of Storage Reservoirs. (Science Series No. 6.). . 16 mo , o 50
Jamieson, A. Text Book on Steam and Steam Engines. . . 8vo, 3 ooElementary Manual on Steam and the Steam Engine . 12mo, 150Jannettaz, E. Guide to the Determination of Rocks. Trans.by G. W. Plympton. $12 m \mathrm{mo}$,I 50
Jehl, F. Manufacture of Carbons $8 \mathrm{vo},{ }_{4}$ oo
Jennings, A. S. Commercial Paints and Painting. (West-minster Series.) . 8vo (In Press.)Jennison, F. H. The Manufacture of Lake Pigments 8vo, *3 ooJepson, G. Cams and the Principles of their Construction...8vo, $*_{\text {I }} 50$——Mechanical Drawing...................... . . 8vo (In Preparation.)Jockin, W. Arithmetic of the Gold and Silversmith..... I2mo, *I 00
Johnson, G. L. Photographic Optics and Color Photography 8vo, *3 oo
Johnson, W. H. The Cultivation and Preparation of Para Rubber. 8vo, *3 oo
Johnson, W. McA. The Metallurgy of Nickel (In Preparation.)
Johnston, J. F. W., and Cameron, C. Elements of AgriculturalChemistry and Geology. 12 mo ,260
Joly, J. Radioactivity and Geology. *3 00
Jones, H. C. Electrical Nature of Matter and Radioactivity
Jones, M. W. Testing Raw Materials Used in Paint..... I2mo, *2 00 Jones, L., and Scard, F. I. Manufacture of Cane Sugar..... 8vo, *5 oo Joynson, F. H. Designing and Construction of Machine Gear- ing.... 8vo, 200
J uiptner, H. F. V. Siderology: The Science of Iron. $8 \mathrm{vo},{ }^{*} 5$ oo
Kansas City Bridge. 4to, 6 oo
Kapp, G. Alternate Current Machinery. (Science Series No. 96.)... 6 mo , 50
-Dynamos, Motors, Alternators and Rotary Converters.Trans. by H. H. Simmons. 8vo,400
- Electric Transmission of Energy $12 \mathrm{mo}, 350$
Keim, A. W. Prevention of Dampness in Buildings $8 \mathrm{vo},{ }^{*}{ }_{2} 00$
Keller, S. S. Mathematics for Engineering Students.
12 mo , half leather,
- Algebra and Trigonometry, with a Chapter on Vectors. *I 75
- Special Algebra Edition * 100
- Plane and Solid Geometry. * 125
- Analytical Geometry and Calculus. *2 00
Kelsey, W. R. Continuous-current Dynamos and Motors. $8 \mathrm{vo},{ }^{*}{ }_{2} 5$
Kemble, W. T., and Underhill, C. R. The Periodic Law and the Hydrogen Spectrum 8vo, paper, *o 50
Kemp, J. F. Handbook of Rocks. $8 \mathrm{vo},{ }^{*} 50$
Kendall, E. Twelve Figure Cipher Code. 4to, *i5 oo
Kennedy, A. B. W., and Thurston, R. H. Kinematics of Machinery. (Science Series No. 54.)............16mo, o 50Kennedy, A. B. W., Unwin, W. C., and Idell, F. E. CompressedAir. (Science Series No. 106.)..................... 16mo, o 50
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 19
Kennedy, R. Modern Engines and Power Generators. Six Volumes. 4to, 1500
Single Volumes. each, 300
_ Electrical Installations. Five Volumes 1500
Single Volumes 350
Flying Machines; Practice and Design. * 200
Kennelly, A. E. Electro-dynamic Machinery. I 50
Kent, W. Strength of Materials. (Science Series No. 41.).16mo, - 50
Kershaw, J. B. C. Fuel, Water and Gas Analysis. *2 50
-_ Electrometallurgy. (Westminster Series.)........... . 8vo, *2 00
—— The Electric Furnace in Iron and Steel Production. . 12 mo , * 150
Kingdon, J. A. Applied Magnetism. *3 0
Kinzbrunner, C. Alternate Current Windings. * 150
-Continuous Current Armatures. * 50
- Testing of Alternating Current Machines. *2 oo
Kirkaldy, W. G. David Kirkaldy's System of Mechanical Testing. 4to, 1000
Kirkbride, J. Engraving for Illustration $8 \mathrm{vo},{ }^{*}{ }^{1} 50$
Kirkwood, J. P. Filtration of River Waters. 750
Klein, J. F. Design of a High speed Steam-engine $8 \mathrm{vo},{ }^{*} 5$ oo
-_ Physical Significance of Entropy $8 \mathrm{vo}, *^{5} 5$
Kleinhans, F. B. Boiler Construction 300
Knight, Capt. A. M. Modern Steamship $8 \mathrm{vo}, *_{7} 50$
Half Mor. *9 оо
Knox, W. F. Logarithm Tables (In Preparation.)
Knott, C. G., and Mackay, J. S. Practical Mathematics. . .8vo, 200
Koester, F. Steam-Electric Power Plants. 4to, *5 oo
- Hydroelectric Developments and Engineering. 4to, *5 oo
Koller, T. The Utilization of Waste Products. 8vo, *3 50
- Cosmetics $8 \mathrm{vo},{ }^{*}{ }_{2} 50$
Krauch, C. Testing of Chemical Reagents. Trans. by J. A. Williamson and L. W. Dupre. 8vo, *3 oo
Lambert, T. Lead and its Compounds. 8vo, *3 50
- Bone Products and Manures $8 \mathrm{vo},{ }^{*} 3$ oo
Lamborn, L. L. Cottonseed Products. 8vo, *3 oo
- Modern Soaps, Candles, and Glycerin. 8vo, ${ }^{*} 750$
Lamprecht, R. Recovery Work After Pit Fires. Trans. by C. Salter 8vo, *4 oo
Lanchester, F. W. Aerial Flight. Two Volumes. 8vo.Vol. I. Aerodynamics.*6 oo
Vol. II. Aerodonetics. *6 oo
Larner, E. T. Principles of Alternating Currents i2mo, * 25
Larrabee, C. S. Cipher and Secret Letter and Telegraphic Code. 16 mo, o 60
La Rue, B. F. Swing Bridges. (Science Series No. 107.). 16 mo , o 50
Lassar-Cohn, Dr. Modern Scientific Chemistry. Trans. by M. M. Pattison Muir. 12 mo , *2 00
Latimer, L. H., Field, C. J., and Howell, J. W. Incandescent Electric Lighting. (Science Series No. 57.).... .r6mo, - 50
Latta, M. N. Handbook of American Gas-Engineering Practice.8vo, *4 50
- American Producer Gas Practice 4to, *6 oo
Leask, A. R. Breakdowns at Sea 12mo, 200
- Triple and Quadruple Expansion Engines. 12 mo , 200
- Refrigerating Machinery 200
Lecky, S. T. S. "Wrinkles" in Practical Navigation *8 оо
Le Doux, M. Ice-Making Machines. (Science Series No. 46.)
16 mo, o 50
Leeds, C. C. Mechanical Drawing for Trade Schools oblong, 4to, High School Edition. * 125
Machinery Trades Edition *2 00
Leférre, L. Architectural Pottery. Trans. by H. K. Bird and W. M. Binns. 4to, *7 50
Lehner, S. Ink Manufacture. Trans. by A. Morris and H. Robson *2 50
Lemstrom, S. Electricity in Agriculture and Horticulture.

$$
8 \mathrm{vo}, \quad{ }^{\mathrm{I}} 50
$$

Le Van, W. B. Steam-Engine Indicator. (Science Series No. - 50
Lewes, V. B. Liquid and Gaseous Fuels. (Westminster Series.) 8vo, *2 oo
Lieber, B. F. Lieber's Standard Telegraphic Code $8 \mathrm{vo},{ }^{*}$ io oo
-Code. German Edition. 8vo, *io oo

- - Spanish Edition 8 vo , * 10 оо
———French Edition. $8 \mathrm{vo},{ }^{*}$ io 00
—— Terminal Index $8 \mathrm{vo},{ }^{*} 250$
- Lieber's Appendix. folio, *15 oo
D. VAN NOSTRAND COMPANY's SHORT-TITLE CATALOG 21
Lieber, B. F. Handy Tables................................ . 4 to, ${ }^{*}{ }_{2} 5$
- Bankers and Stockbrokers' Code and Merchants and Shippers' Blank Tables. $8 \mathrm{vo},{ }^{*} \mathrm{I} 500$
- 100,000,000 Combination Code. 8 vo , * I 500
- Engineering Code. $8 \mathrm{vo},{ }^{*}$ Io 00
Livermore, V. P., and Williams, J. How to Become a Com- petent Motorman .. 12 mo , *I 00
Livingstone, R. Design and Construction of Commutators. 8vo, ${ }^{2} 25$
Lobben, P. Machinists' and Draftsmen's Handbook 250
Locke, A. G. and C. G. Manufacture of Sulphuric Acid 8 vo , 10 оо
Lockwood, T. D. Electricity, Magnetism, and Electro-teleg- raphy. $8 \mathrm{vo}, 250$
- Electrical Measurement and the Galvanometer 12 mo , I 50
Lodge, O. J. Elementary Mechanics. I 50
- Signalling Across Space without Wires $8 \mathrm{vo}, *_{2}$ oo
Lord, R. T. Decorative and Fancy Fabrics 8vo, *3 50
Loring, A. E. A Handbook of the Electromagnetic Telegraph. (Science Series No. 39)...............................16mo, o 50
Loewenstein, L. C., and Crissey, C. P. Centrifugal Pumps. (In Press.)
Lucke, C. E. Gas Engine Design. $8 \mathrm{vo},{ }^{*} 300$
-- Power Plants: their Design, Efficiency, and Power Costs. 2 vols.
- Power Plant Papers. Form I. The Steam Power Plant paper, ${ }^{*}{ }^{1} 50$
Lunge, G. Coal-tar Ammonia. Two Volumes. $8 \mathrm{vo},{ }^{*} \mathrm{I} 5$ oo
-- Manufacture of Sulphuric Acid and Alkali. Three Volumes 8vo,
Vol. I. Sulphuric Acid. In two parts ${ }^{*}$ I5 00
Vol. II. Salt Cake, Hydrochloric Acid and Leblanc Soda. In two parts.
Vol. III. Ammonia Soda ${ }^{*}$ I5 00
- Technical Chemists' Handbook. *3 50
——Technical Methods of Chemical Analysis. Trans. by C. A. Keane. In collaboration with the corps of specialists.
Vol. I. In two parts. 8vo, *I5 oo
Vols. II and III. (In Preparation.)
Lupton, A., Parr, G. D. A., and Perkin, H. Electricity as Applied to Mining $8 \mathrm{vo},{ }^{*} 450$
Luquer, L. M. Minerals in Rock Sections. $8 \mathrm{vo},{ }^{*}{ }^{1} 50$
Macewen, H. A. Food Inspection. 8vo, *2 50
Mackenzie, N. F. Notes on Irrigation Works 8vo, * 2
Mackie, J. How to Make a Woolen Mill Pay *2 00
Mackrow, C. Naval Architect's and Shipbuilder's Pocket- book 16mo, leather, 500
Maguire, Capt. E. The Attack and Defense of Coast Fortifica- tions 8vo, 250
Maguire, Wm. R. Domestic Sanitary Drainage and Plumbing 8vo, 400
Mallet, A. Compound Engines. Trans. by R. R. Buel. (Science Series No. 1o.) 16 mo ,
Mansfield, A. N. Electro-magnets. (Science Series No. 64) 16 mo , o 50
Marks, E. C. R. Construction of Cranes and Lifting Machinery
$12 \mathrm{mo}, *_{1} 50$
- Construction and Working of Pumps * ${ }^{1} 50$
- Manufacture of Iron and Steel Tubes. *2 00
- Mechanical Engineering Materials. * 100
Marks, G. C. Hydraulic Power Engineering 350
-_Inventions, Patents and Designs. * 100
Markham, E. R. The American Steel Worker. 250
Marlow, T. G. Drying Machinery and Practice ${ }^{2} 5$ oo
Marsh, C. F. Concise Treatise on Reinforced Concrete *2 50
Marsh, C. F., and Dunn, W. Reinforced Concrete. *5 00
——Manual of Reinforced Concrete and Concrete Block Con- struction. ${ }^{*} 250$
Marshall, W.J., and Sankey, H. R. Gas Engines. (Westminster Series.) 8vo, $*_{2} 00$
Massie, W. W., and Underhill, C. R. Wireless Telegraphy and Telephony I2mio, * 1 oo
Matheson, D. Australian Saw-Miller's Log and Timber Ready Reckoner. i2mo, leather, I 50
Mathot, R. E. Internal Combustion Engines 8vo, *6 оо
Maurice, W. Electric Blasting Apparatus and Explosives .. 8vo, *3 50
- - Shot Firer's Guide. .8vo, * 50
Maxwell, J. C. Matter and Motion. (Science Series No. 36.) 16 mo , o 50
Maxwell, W. H., and Brown, J. T. Encyclopedia of Municipal and Sanitary Engineering. 4to, 1000
Mayer, A. M. Lecture Notes on Physics. 8vo, 200
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 23
McCullough, R. S. Mechanical Theory of Heat 350
McIntosh, J. G. Technology of Sugar. *4 50
- Industrial Alcohol *3 00
- Manufacture of Varnishes and Kindred Industries. ThreeVolumes. 8vo.
Vol. I. Oil Crushing, Refining and Boiling *3 50
Vol. II. Varnish Materials and Oil Varnish Making *4 00
Vol. III. (ln Preparation.)
McKnight, J. D., and Brown, A. W. Marine MultitubularBoilers*I 50
McMaster, J. B. Bridge and Tunnel Centres. (Science SeriesNo. 20.). 16 mo ,o 50
McMechen, F. L. Tests for Ores, Minerals and Metals... i2mo, * 100
McNeill, B. McNeill's Code 8vo, *6 oo
McPherson, J. A. Water-works Distribution 250
Melick, C. W. Dairy Laboratory Guide * 125
Merck, E. Chemical Reagents; Their Purity and Tests * 50
Merritt, Wm. H. Field Testing for Gold and Silver . 16mo, leather, I 50
Meyer, J. G. A., and Pecker, C. G. Mechanical Drawing and Machine Design 500
Michell, S. Mine Drainage 10 oo
Mierzinski, S. Waterproofing of Fabrics. Trans. by A. Morris and H. Robson...... 8vo, ${ }^{*} 250$
Miller, E. H. Quantitative Analysis for Mining Engineers . 8vo, * 50
Miller, G. A. Determinants. (Science Series No. 105.). . r6mo,Milroy, M. E. W. Home Lace-making..................... . 12 mo , ${ }^{\text {I }}$ oo
Minifie, W. Mechanical Drawing. $8 \mathrm{vo},{ }^{*} 4$ oo
Mitchell, C. A., and Prideaux, R. M. Fibres Used in Textile and Allied Industries 8vo,
Modern Meteorology 12 mo I 50Monckton, C. C. F. Radiotelegraphy. (Westminster Series.)$8 \mathrm{vo}, *_{2}$ ooMonteverde, R. D. Vest Pocket Glossary of English-Spanish,Spanish-English Technical Terms......64mo, leather, ${ }^{*}$ I oo
Moore, E. C. S. New Tables for the Complete Solution ofGanguillet and Kutter's Formula8vo, *5 ooMoreing, C. A., and Neal, T. New General and Mining Tele-graph Code.... 8vo,*5 oo
Morgan, A. P. Wireless Telegraph Construction for Amateurs.
$12 \mathrm{mo},{ }^{*} \mathrm{I} 50$
Moses, A. J. The Characters of Crystals *2 00
Moses, A. J., and Parsons, C. I. Elements of Mineralogy. . 8 vo , *2 50
Moss, S. A. Elements of Gas Engine Design. (ScienceSeries.)..... 6 mo,o 50
- The Lay-out of Corliss Valve Gears. (Science Series). 16mo, o 50
Mullin, J. P. Modern Moulding and Pattern-making . . . I2mo, 250
Munby, A. E. Chemistry and Physics of Building Materials. (Westminster Series.). 8vo, *2 00
Murphy, J. G. Practical Mining............................ . . 6 mo , I 00
Murray, J. A. Soils and Manures. (Westminster Series.). 8vo, ${ }^{*} 200$
Naquet, A. Legal Chemistry. 200
Nasmith, J. The Student's Cotton Spinning 300
Neilson, R. M. Aeroplane Patents. *2 00
Nerz, F. Searchlights. Trans. by C. Rodgers. *3 oo
Neuberger, H., and Noalhat, H. Technology of Petroleum. Trans. by J. G. McIntosh. .Newall, J. W. Drawing, Sizing and Cutting Bevel-gears.
8vo, I 50
Newlands, J. Carpenters and Joiners' Assistant folio, half mor., 15 oo
Nicol, G. Ship Construction and Calculations............. . 8vo, *4 50
Nipher, F. E. Theory of Magnetic Measurements. 12 mo , 100
Nisbet, H. Grammar of Textile Design ${ }^{*} 3^{\circ} 00$
Nolan, H. The Telescope. (Science Series No. 51.)......16mo, - 50
Noll, A. How to Wire Buildings I 50
Nugent, E. Treatise on Optics 150
O'Connor, H. The Gas Engineer's Pocketbook. . . 12 mo , leather, 350
——Petrol Air Gas *o 75Ohm, G. S., and Lockwood, T. D. Galvanic Circuit. Trans. byWilliam Francis. (Science Series No. 102.). . . . 16 mo , 050
Olsen, J. C. Text book of Quantitative Chemical Analysis .. 8vo, *4 oo
Olsson, A. Motor Control, in Turret Turning and Gun Elevating.(U. S. Navy Electrical Series, No. i.)12mo, paper, *o 50
Oudin, M. A. Standard Polyphase Apparatus and Systems ..8vo, *3 oo
Palaz, A. Industrial Photometry. Trans. by G. W. Patterson, Jr. 8vo, *4 00
Pamely, C. Colliery Manager's Handbook 8vo, *io oo
Parr, G. D. A. Electrical Engineering Measuring Instruments. $8 \mathrm{vo},{ }^{*} 350$
Parry, E. J. Chemistry of Essential Oils and Artificial Per- fumes........ 8vo, *5 oo
Parry, E. J., and Coste, J. H. Chemistry of Pigments $8 \mathrm{vo},{ }^{*} 450$
Parry, L. A. Risk and Dangers of Various Occupations 8vo, *3 oo
Parshall, H. F., and Hobart, H. M. Armature Windings 4to, ${ }^{*} 750$
- Electric Railway Engineering. $4^{\text {to }}$, ${ }^{*}$ io oo
Parshall, H. F., and Parry, E. Electrical Equipment of Tram- ways.... (In Press.)
Parsons, S. J. Malleable Cast Iron 8vo, *2 50
Passmore, A. C. Technical Terms Used in Architecture *3 50
Patterson, D. The Color Printing of Carpet Yarns *350
- Color Matching on Textiles. *3 oo
- The Science of Color Mixing ${ }^{*} 3$ oo
Patton, H. B. Lecture Notes on Crystallography * 25
Paulding, C. P. Condensation of Steam in Covered and Bare Pipes. $8 \mathrm{vo},{ }^{*} 200$
——Transmission of Heat through Cold-storage Insulation

Perkin, F. M. Practical Methods of Inorganic Chemistry.Perrigo, O. E. Change Gear Devices........................ 8vo, ${ }^{\text {I2 }}$ I 00
Perrine, F. A.C. Conductors for Electrical Distribution $8 \mathrm{vo},{ }^{*} 350$
Perry, J. Applied Mechanics. $8 \mathrm{vo}, *_{2} 50$
Petit, G. White Lead and Zinc White Paints 8 vo, * $^{1} 50$Petit, R. How to Build an Aeroplane. Trans. by T. O'B.Hubbard, and J. H. Ledeboer..................... . 8vo, * ${ }_{\text {I }} 50$Pettit, Lieut. J. S. Graphic Processes. (Science Series No. 76.)16 mo , o 50
Philbrick, P. H. Beams and Girders. (Science Series No. 88.)
16mo,
Phillips, J. Engineering Chemistry $8 \mathrm{vo},{ }^{*} 450$
-Gold Assaying. $8 \mathrm{vo},{ }^{*} 50$
—— Dangerous Goods 8vo, 350
Phin, J. Seven Follies of Science 12 mo , * 25

- Household Pests, and How to Get Rid of Them
8vo (In Preparation.)
Pickworth, C. N. The Indicator Handbook. Two Volumes
12 mo , each, 150
—— Logarithms for Beginners 12 mo , boards, o 50
- The Slide RulePlane Table, The$8 \mathrm{vo}, \quad 2$ oo
Plattner's Manual of Blowpipe Analysis. Eighth Edition, re- vised. Trans. by H. B. Cornwall. $8 \mathrm{vo},{ }^{*} 4$ oo
Plympton, G. W. The Aneroid Barometer. (Science Series.)16mo, o 50
_-How to become an Engineer. (Science Series No. 1oo.) 16mo, 050
—— Van Nostrand's Table Book. (Science Series No. 104.) 16mo, o 50
Pochet, M. L. Steam Injectors. Translated from the French. (Science Series No. 29.)........................... 6 mo , o 50
Pocket Logarithms to Four Places. (Science Series.).16mo, o 50 leather, I oo
Pope, F. L. Modern Practice of the Electric Telegraph.... 8vo, I 50
Popplewell, W. C. Elementary Treatise on Heat and Heat Engines $12 \mathrm{mo},{ }^{*} 300$
- Prevention of Smoke $8 \mathrm{vo},{ }^{*} 350$
- Strength of Minerals. 8 vo, * 75
Potter, T. Concrete $8 \mathrm{vo},{ }^{*} 3$ oo
Practical Compounding of Oils, Tallow and Grease $8 \mathrm{vo},{ }^{*} 350$
Practical Iron Founding $12 \mathrm{mo}, \quad 150$
Pray, T., Jr. Twenty Years with the Indicator. $8 \mathrm{vo}, \quad 250$
——Steam Tables and Engine Constant. $8 \mathrm{vo}, \quad 2$ oo
——Calorimeter Tables. 8 vo , I oo
Preece, W. H. Electric Lamps. (In Press.)
Prelini, C. Earth and Rock Excavation. $8 \mathrm{vo},{ }^{*} 3$ oo
_— Dredges and Dredging 8vo (In Press.)
-Graphical Determination of Earth Slopes. $8 \mathrm{vo},{ }^{*}{ }_{2}$ oo
- Tunneling $8 \mathrm{vo}, \quad 3$ oo
Prescott, A. B. Organic Analysis $8 \mathrm{vo}, 500$
Prescott, A. B., and Johnson, O. C. Qutauitative Chemical Analysis $8 \mathrm{vo},{ }^{*} 350$
D. VAN NUSTRAND COMPANY'S SHORT-TITLE CATALOG 27
Prescott, A. B., and Sullivan, E. C. First Book in Qualitative Chemistry 12 mo , * 150
Pritchard, O. G. The Manufacture of Electric-light Carbons. 8vo, paper, *o 60
Prost, E. Chemical Analysis of Fuels, Ores, Metals. Trans. by J. C. Smith 8vo, *4 50
Pullen, W. W. F. Application of Graphic Methods to the Design of Structures. *2 50
—_ Injectors: Theory, Construction and Working. r2mo, * 150
Pulsifer, W. H. Notes for a History of Lead 400
Purchase, W. R. Masonry *3 00
Putsch, A. Gas and Coal-dust Firing. *3 00
Pynchon, T. R. Introduction to Chemical Physics 300
Rafter, G. W. Mechanics of Ventilation. (Science Series No.
33.) 16 mo , 050
Potable Water. (Science Series No. 103.) r6mo, o 50
_- Treatment of Septic Sewage. (Science Series.). 16 mo , 050
Rafter, G. W., and Baker, M. N. Sewage Disposal in the United States. 4to, *6 00
Raikes, H. P. Sewage Disposal Works 8vo, *4 00
Railway Shop Up-to-Date 4to, 200
Ramp, H. M. Foundry Practice (In Press.)
Randall, P. M. Quartz Operator's Handbook $12 \mathrm{mo}, \quad 200$
Randau, P. Enamels and Enamelling 8vo, *4 oo
Rankine, W. J. M. Applied Mechanics. 8vo, 500
- Civil Engineering. 650
- Machinery and Millwork 500
—— The Steam-engine and Other Prime Movers 500
__ Useful Rules and Tables 400
Rankine, W. J. M., and Bamber, E. F. A Mechanical Text- book 8vo, 350
Raphael, F. C. Localization of Faults in Electric Light and Power Mains 8vo, *3 oo
Rathbone, R. L. B. Simple Jewellery. 8vo, *2 oo
Rateau, A. Flow of Steam through Nozzles and Orifices. Trans. by H. B. Brydon 8vo, *I 50
Rausenberger, F. The Theory of the Recoil of Guns 8vo, *4 50
Rautenstrauch, W. Notes on the Elements of Machine Design, 8 vo , boards, ${ }^{*}{ }^{\mathrm{I}} 50$Rautenstrauch, W., and Williams, J. T. Machine Drafting andEmpirical Design.
Part I. Machine Drafting. 8vo, *i 25
Part II. Empirical Design (In Preparation.)
Raymond, E. B. Alternating Current Engineering. 12 mo , ${ }^{*} 250$
Rayner, H. Silk Throwing and Waste Silk Spinning. 8vo, *2 50
Recipes for the Color, Paint, Varnish, Oil, Soap and Drysaltery Trades. 8vo, *3 50
Recipes for Flint Glass Making. 12 mo , *4 50
Redwood, B. Petroleum. (Science Series No. 92.).......16mo, o 50
Reed's Engineers' Handbook. 8vo, ${ }^{*} 5$ oo
- Key to the Nineteenth Edition of Reed's Engineers' Hand- book. 8vo, *3 00
—— Useful Hints to Sea-going Engineers I 50
- Marine Boilers: 200
Reinhardt, C. W. Lettering for Draftsmen, Engineers, and Students. oblong 4to, boards, I 00
- The Technic of Mechanical Drafting.. . oblong 4to, boards, * 1 oo
Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson. *2 50
Reiser, N. Faults in the Manufacture of Woolen Goods. Trans. by A. Morris and H. Robson 8vo, *2 50
- Spinning and Weaving Calculations. 8vo, *5 00
Renwick, W. G. Marble and Marble Working. 8vo, 500
Reynolds, O., and Idell, F. E. Triple Expansion Engines.
(Science Series No. 99.)........................... . . . 6 mo , o 50
Rhead, G. F. Simple Structural Woodwork. 12 mo , *i 00
Rhead, G. W. British Pottery Marks. 8vo, *3 oo
Rice, J. M., and Johnson, W. W. A New Method of Obtaining the Differential of Functions o 50
Richardson, J. The Modern Steam Engine *3 50
Richardson, S. S. Magnetism and Electricity *2 00
Rideal, S. Glue and Glue Testing *4 oo
Rings, F. Concrete in Theory and Practice *2 50
Ripper, W. Course of Instruction in Machine Drawing...folio, * 60
Roberts, F. C. Figure of the Earth. (Science Series No. 79.)
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 29
Roberts, J., Jr. Laboratory Work in Electrical Engineering. $8 \mathrm{vo},{ }^{*}{ }_{2}$ oo
Robertson, L. S. Water-tube Boilers. 8vo, 300
Robinson, J. B. Architectural Composition. 8vo, *2 50
Robinson, S. W. Practical Treatise on the Teeth of Wheels. (Science Series No. 24.) - 50
_-Railroad Economics. (Science Series No. 59.)...... 16mo, - 50 Wrought Iron Bridge Members. (Science Series No. 6o.)
16mo, o 50
Robson, J. H. Machine Drawing and Sketching. . (In Press.)
Roebling, J. A. Long and Short Span Railway Bridges. . folio, 2500
Rogers, A. A Laboratory Guide of Industrial Chemistry . . 12 mo , ${ }^{{ }^{I}} 50$Rogers, A., and Aubert, A. B. Industrial Chemistry (In Press.)Rogers, F. Magnetism of Iron Vessels. (Science Series No. 30.)
16 mo , 050
Rollins, W. Notes on X-Light............................... . . 8vo, 500
Rose, J. The Pattern-makers' Assistant. 8vo, 250
- Key to Engines and Engine-running . 12 mo , 250
Rose, T K. The Precious Metals. (Westminster Series.).
$8 \mathrm{vo},{ }^{*}{ }_{2} 00$
Rosenhain, W. Glass Manufacture. (Westminster Series.). . 8 vo , ${ }^{*}{ }_{2}$ ooRoss, W. A. Blowpipe in Chemistry and Metallurgy...12mo, $*_{2}$ ooRossiter, J. T. Steam Engines. (Westminster Series.)
8vo (In Press.)
- Pumps and Pumping Machinery. (Westminster Series.)
8vo (In Press.)
Roth. Physical Chemistry $8 \mathrm{vo},{ }^{*}{ }_{2}$ oo
Rouillion, L. The Economics of Manual Training. $8 \mathrm{vo}, 200$
Rowan, F. J. Practical Physics of the Modern Steam-boiler $8 \mathrm{vo}, 750$
Rowan, F. J., and Idell, F. E. Boiler Incrustation and Corro- sion. (Science Series No. 27.).................... 16 mo , 050
Roxburgh, W. General Foundry Practice. $8 \mathrm{vo},{ }^{*} 350$
Ruhmer, E. Wireless Telephony. Trans. by J. Erskine- Murray *3 50
Russell, A. Theory of Electric Cables and Networks 8vo, *3 00
Sabine, R. History and Progress of the Electric Telegraph. 12mo, I 25
Saeltzer, A. Treatise on Acoustics 12 mo , 100
Salomons, D. Electric Light Installations. 12 mo .
Vol. I. The Management of Accumulators. 250
Vol. II. Apparatus 225
Vol. III. Applications. I 50
Sanford, P. G. Nitro-explosives 8vo, *4 00
Saunders, C. H. Handbook of Practical Mechanics 100
leather, I 25
Saunnier, C. Watchmaker's Handbook 300
Sayers, H. M. Brakes for Tram Cars. * 25
Scheele, C. W. Chemical Essays. ${ }^{*} 200$
Schellen, H. Magneto-electric and Dynamo-electric Machines
8vo, 500
Scherer, R. Casein. Trans. by C. Salter 8vo, *3 00
Schmall, C. N. First Course in Analytic Geometry, Plane and Solid. 12mo, half leather, * 75
Schmall, C. N., and Schack, S. M. Elements of Plane Geometry 12 mo , * 25
Schmeer, L. Flow of Water. 8vo, *3 00
Schumann, F. A Manual of Heating and Ventilation. ramo, leather, I 50
Schwartz, E. H. L. Causal Geology 8vo, *2 50
Schweizer, V., Distillation of Resins. 8vo, *3 50
Scott, W. W. Qualitative Chemical Analysis. A Laboratory Manual. 8vo * 50
Scribner, J. M. Engineers' and Mechanics' Companion.
16mo, leather, I 50
Searle, G. M. "Sumners' Method." Condensed and Improved. (Science Series No. 124.) 8vo, 600
Seaton, A. E. Manual of Marine Engineering 8vo, 600
Seaton, A. E., and Rounthwaite, H. M. Pocket-book of Marine Engineering r6mo, leather, 300Seeligmann, T., Torrilhon, G. L., and Falconnet, H. IndiaRubber and Gutta Percha. Trans. by J. G. McIntosh$8 \mathrm{vo},{ }^{*} 5$ oo
Seidell, A. Solubilities of Inorganic and Organic Substances $8 \mathrm{vo}, *_{3}$ oo
Sellew, W. H. Steel Rails 4to (In Press.)
Senter, G. Outlines of Physical Chemistry. 12mo, *I 50
Sever, G. F. Electric Engineering Experiments 8vo, boards, *i oo
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 31
Sever, G. F., and Townsend, F. Laboratory and Factory Tests in Electrical Engineering 8vo, *2 50
Sewall, C. H. Wireless Telegraphy 8vo,
- Lessons in Telegraphy 12 mo ,
* 100
Sewell, T. Elements of Electrical Engineering 8vo,
- The Construction of Dynamos 8vo, *3 oo
Sexton, A. H. Fuel and Refractory Materials 12 mo , *2 50
—— Chemistry of the Materials of Engineering *2 50
- Alloys (Non-Ferrous) *3 00
- The Metallurgy of Iron and Steel *6 50
Seymour, A. Practical Lithography * 250
- Modern Printing Inks ${ }^{*} 200$
Shaw, H. S. H. Mechanical Integrators. (Science Series No. 83.) 16mo, o 50Shaw, P. E. Course of Practical Magnetism and Electricity.$8 \mathrm{vo}, *_{1}$ oo
Shaw, S. History of the Staffordshire Potteries $8 \mathrm{vo},{ }^{*} 3$ oo
Chemistry of Compounds Used in Porcelain Manufacture$8 \mathrm{vo},{ }^{*} 5$ oo
Sheldon, S., and Hausmann, E. Direct Current Machines. $8 \mathrm{vo},{ }^{*}{ }_{2} 50$
- Alternating-current Machines $8 \mathrm{vo}, *_{2} 50$
Sherer, R. Casein. Trans. by C. Salter *3 00
Sherriff, F. F. Oil Merchants' Manual *3 50
Shields, J. E. Notes on Engineering Construction 150
Shock, W. H. Steam Boilers 4to, half mor., 1500
Shreve, S. H. Strength of Bridges and Roofs $8 \mathrm{vo}, 350$
Shunk, W. F. The Field Engineer 12 mo mor., 250
Simmons, W. H., and Appleton, H. A. Handbook of Soap Manufacture 8vo, *3 oo
Simms, F. W. The Principles and Practice of Leveling $8 \mathrm{vo}, \quad 250$
- Practical Tunneling. $8 \mathrm{vo}, \quad 750$
Simpson, G. The Naval Constructor. 12 mo , mor., *5 ooSinclair, A. Development of the Locomotive Engine.
8 vo , half leather, 500
Sindall, R. W. Manufacture of Paper. (Westminster Series.)

$$
8 \mathrm{vo}, \quad *_{2} \text { oo }
$$Sloane, T. O'C. Elementary Electrical Calculations12mo, *2 ooSmith, C. A. M. Handbook of Testing. Vol. I. Materials. (In Press.)

Smith, C. F. Practical Alternating Currents and Testing. . 8vo, ${ }^{*} 250$

- Practical Testing of Dynamos and Motors 8vo, *2 00
Smith, F. E. Handbook of General Instruction for Mechanics. 12 mo , I 50
Smith, I. W. The Theory of Deflections and of Latitudes and Departures 16 mo , mor., 300
Smith, J. C. Manufacture of Paint. 8vo,
Smith, W. Chemistry of Hat Manufacturing. 12 mo ,*3 00
Snell, A. T. Electric Motive Power 8vo,
Snow, W. G. Pocketbook of Steam Heating and Ventilation
(In Press.)
Snow, W. G., and Nolan, T. Ventilation of Buildings. (Science Series No. 5.). 6 mo ,Soddy, F. Radioactivity . 8vo,*3 00
Solomon, M. Electric Lamps. (Westminster Series.)..... 8vo,Sothern, J. W. The Marine Steam Turbine$8 \mathrm{vo},{ }^{*} 500$
Soxhlet, D. H. Dyeing and Staining Marble. Trans. by A. Morris and H. Robson 8vo,Spang, H. W. A Practical Treatise on Lightning Protection
12mo, I 00
Spangenburg, L. Fatigue of Metals. Translated by S. H. Shreve. (Science Series No. 23.).................16mo, o 50
Specht, G. J., Hardy, A. S., McMaster, J. B., and Walling. Topo- graphical Surveying. (Science Series No. 72.). . 16mo, 050
Speyers, C. L. Text-book of Physical Chemistry 8vo, *2 25Stahl, A. W. Transmission of Power. (Science Series No. 28.)16 mo ,
Stahl, A. W., and Woods, A. T. Elementary Mechanism . . I 2mo, *2 00
Staley, C., and Pierson, G. S. The Separate System of Sewerage.$8 \mathrm{vo},{ }^{*} 3$ оо
Standage, H. C. Leatherworkers' Manual 8 vo , ${ }^{*} 350$
——Sealing Waxes, Wafers, and Other Adhesives 8 vo , *2 00
- Agglutinants of all Kinds for all Purposes. 12 mo ,
Stansbie, J. H. Iron and Steel. (Westminster Series.)... . 8vo, *2 0
Stevens, H. P. Paper Mill Chemist 16 mo ,
Stevenson, J. L. Blast-Furnace Calculations.....12mo, leather, ${ }^{*} 200$
Stewart, A. Modern Polyphase Machinery 12 mo , ${ }^{*} 200$
Stewart, G. Modern Steam Traps 12 mo , * 25
Stiles, A. Tables for Field Engineers. I2mo,
I 00
Stillman, P. Steam-engine Indicator. I 00
Stodola, A. Steam Turbines. Trans. by L. C. Loewenstein. 8vo, *5 00
Stone, H. The Timbers of Commerce 8vo, 350
Stone, Gen. R. New Roads and Road Laws 12 mo , 100
Stopes, M. Ancient Plants 8vo *2 oo
- The Study of Plant Life 8vo (In Press.)
Sudborough, J. J., and James, T. C. Practical Organic Chem- istry. 2 mo , *2 00
Suffling, E. R. Treatise on the Art of Glass Painting. 8vo, *3 50
Swan, K. Patents, Designs and Trade Marks. (Westminster Series.).......... 8vo, *2 00
Sweet, S. H. Special Report on Coal 300
Swinburne, J., Wordingham, C. H., and Martin, T. C. Electric Currents. (Science Series No. Io9.).............16mo, 050
Swoope, C. W. Practical Lessons in Electricity 12 mo , *2 00
Tailfer, L. Bleaching Linen and Cotton Yarn and Fabrics. . 8vo, *5 oo
Tate, J. S. Surcharged and Different Forms of Retaining-walls.(Science Series No. 7.)16mo,
Templeton, W. Practical Mechanic's Workshop Companion.
12 mo , mor., 200
Terry, H. L. India Rubber and its Manufacture. (Westminster Series.) 8vo, $*_{2}$ oo
Thiess, J. B., and Joy, G. A. Toll Telephone Practice . . (In Preparation.)Thom, C., and Jones, W. H. Telegraphic Connections.oblong i2mo, I 50
Thomas, C. W. Paper-makers' Handbook. (In Press.)
Thompson, A. B. Oil Fields of Russia 4to, ${ }^{*} 750$
- Petroleum Mining and Oil Field Development. 8vo, *5 oo
Thompson, E. P. How to Make Inventions 8vo, 050
Thompson, S. P. Dynamo Electric Machines. (Science Series No. 75.). 16 mo , o 50
Thompson, W. P. Handbook of Patent Law of All Countries r6mo, I 50
Thornley, T. Cotton Combing Machines. 8vo, *3 о
Cotton Spinning 8vo,
First Year *I 50
Second Year. *2 50
Third Year *2 50
Thurso, J. W. Modern Turbine Practice 8vo, * 4 oo
Tidy, C. Meymott. Treatment of Sewage. (Science Series No. 94.) 16 mo , 50
Tinney, W. H. Gold-mining Machinery. 8vo, *3 00
Titherley, A. W. Laboratory Course of Organic Chemistry $8 \mathrm{vo},{ }_{2}$ oo
Toch, M. Chemistry and Technology of Mixed Paints
$8 \mathrm{vo},{ }^{*} 3$ оо
—— Materials for Permanent Painting................... $12 m o$ (In Press.)
Todd, J., and Whall, W. B. Practical Seamanship 8vo, *7 50
Tonge, J. Coal. (Westminster Series.) 8vo, $*_{2} 00$
Townsend, F. Alternating Current Engineering....8vo, boards, * 75
Townsend, J. Ionization of Gases by Collision 8vo, * 125
Transactions of the American Institute of Chemical Engineers.
8vo,
Vol. I. 1908 *6 оо
Vol. II. 1909. *6 oo
Traverse Tables. (Science Series No. II5.) 16 mo , 50
mor., I 00
Trinks, W., and Housum, C. Shaft Governors. (Science Series No. 122.). 6 mo , o 50
Trowbridge, W. P. Turbine Wheels. (Science Series No. 44.)
16 mo , o 50
Tucker, J. H. A Manual of Sugar Analysis 8vo, 350
Tumlirz, O. Potential. Trans. by D. Robertson. 12 mo , 125
Tunner, P. A. Treatise on Roll-turning. Trans. by J. B. Pearse....................... . . 8 vo text and folio atlas, 1000
Turbayne, A. A. Alphabets and Numerals 4to, 200
Turnbull, Jr., J., and Robinson, S. W. A Treatise on the Com- pound Steam-engine. (Science Series No. 8.)...16mo,
Turrill, S. M. Elementary Course in Perspective I2mo, * 25
Underhill, C. R. Solenoids, Electromagnets and Electromag- netic Windings. 12 mo *2 00
Urquhart, J. W. Electric Light Fitting 12mo, 200
- Electro-plating. 12mo, 200
- Electrotyping 12mo, 200
- Electric Ship Lighting. 12mo, 300
Universal Telegraph Cipher Code 12mo, I 00
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 35
Vacher, F. Food Inspector's Handbook 12mo, *2 50
Van Nostrand's Chemical Annual. Second issue 1909 12mo, *2 50
——Year Book of Mechanical Engineering Data. First issue
Van Wagenen, T. F. Manual of Hydraulic Mining....... r6mo, 1 oo
Vega, Baron, Von Logarithmic Tables 8 vo , half mor., 250
Villon, A. M. Practical Treatise on the Leather Industry. Trans. by F. T. Addyman.......................... . . 8vo, *io oo
Vincent, C. Ammonia and its Compounds. Trans. by M. J. Salter $8 \mathrm{vo},{ }^{*} 2$ oo
Volk, C. Haulage and Winding Appliances 8vo, *4 oo
Von Georgiovics, G. Chemical Technology of Textile Fibres.. Trans. by C. Salter $8 \mathrm{vo},{ }_{4} 50$
- Chemistry of Dyestuffs. Trans. by C. Salter 8vo, ${ }^{*} 450$
Vose, G. L. Graphic Method for Solving Certain Questions in Arithmetic and Algebra. (Science Series No. r6.)r6mo, o 50
Wabner, R. Ventilation in Mines. Trans. by C. Salter. . .8vo, *4 50
Wade, E. J. Secondary Batteries. $8 \mathrm{vo},{ }^{4} 4$ oo
Wadsworth, C. Primary Battery Ignition 12mo (In Press.)
Wagner, E. Preserving Fruits, Vegetables, and Meat..... r2mo, *2 50
Walker, F. Aerial Navigation 8vo,
——Dynamo Building. (Science Series No. 98.) 16 mo , o 50
- Electric Lighting for Marine Engineers $8 \mathrm{vo}, \quad 2$ oo
Walker, S. F. Steam Boilers, Engines and Turbines 8vo, 3 oo
——Refrigeration, Heating and Ventilation on Shipboard.
$12 \mathrm{mo}, *_{2} 00$
- Electricity in Mining 8vo, *3 50
Walker, W. H. Screw Propulsion. 8 vo , o 75
Wallis-Tayler, A. J. Bearings and Lubrication. $8 \mathrm{vo},{ }^{*}{ }^{1} 50$
- Modern Cycles. 4 oo
- Motor Cars I 80
- Motor Vehicles for Business Purposes. 350
—— Pocket Book of Refrigeration and Ice Making. I 50
- Refrigerating and Ice-making Machinery. 300
—— Refrigeration and Cold Storage. 450
- Sugar Machinery *2 00
Wanklyn, J. A. Treatise on the Examination of Milk 12mo, I 00
—— Water Analysis 12mo, 200
Wansbrough, W. D. The A B C of the Differential Calculus 12 mo, * $_{1} 50$
Slide Valves 12 mo , *2 oo
Ward, J. H. Steam for the Million I 00
Waring, Jr., G. E. Sanitary Conditions. (Science Series No. 3r.)
16mo, - 50
- Sewerage and Land Drainage *6 oo
—— Modern Methods of Sewage Disposal 200
- How to Drain a House 125
Warren, F. D. Handbook on Reinforced Concrete *2 50
Watkins, A. Photography. (Westminster Series). 8vo (In Press.)
Watson, E. P. Small Engines and Boilers 12 mo , 125
Watt, A. Electro-plating and Electro-refining of Metals * 450
- Electro-metallurgy I 2 mo , 100- The Art of Paper Making
*3 oo—— The Art of Soap-making8vo,
-- Leather Manufacture 8vo,
Weale, J. Dictionary of Terms used in Architecture300
Weale's Scientific and Technical Series. (Complete list sent on application.)
Weather and Weather Instruments 12mo, paper, o 50* 4 oo
Webb, H. L. Guide to the Testing of Insulated Wires and Cables 100
Webber, W. H. Y. Town Gas. (Westminster Series.). 8vo, *2 00
Weekes, R. W. The Design of Alternate Current Transformers
12 mo , I oc
Weisbach, J. A Manual of Theoretical Mechanics 8vo, *6 oosheep, ${ }^{*} 750$
Weisbach, J., and Herrmann, G. Mechanics of Air Machinery 8vo, *3 75
Weston, E. B. Loss of Head Due to Friction of Water in Pipes

$$
12 \mathrm{mo},{ }^{*}{ }_{50}
$$

Weymouth, F. M. Drum Armatures and Commutators. 8vo, *3 оо
Wheeler, J. B. Art of War 12 mo , I 75
—— Field Fortifications 12mo, I 75
Whipple, S. An Elementary and Practical Treatise on Bridge Building 8vo, 3 oo
D. VAN NOSTRAND COMPANY'S SHORT-TITLE CATALOG 37
Whithard, P. Illuminating and Missal Painting I 50
Wilcox, R. M. Cantilever Bridges. (Science Series No. 25.)
16 mo , o 50
Wilkinson, H. D. Submarine Cable Laying and Repairing. $8 \mathrm{vo},{ }^{* 6}$ oo
Williams, A. D., Jr., and Hutchinson, R. W. The Steam Turbine. (In Press.)
Williamson, R. S. On the Use of the Barometer 1500

- Practical Tables in Meteorology and Hypsometery 250
Willson, F. N. Theoretical and Practical Graphics. *4 00
Wimperis, H. E. Internal Combustion Engine *3 00
Winchell, N. H., and A. N. Elements of Optical Mineralogy.
Winver C 8vo, *3 50
Winkler, C., and Lunge, G. Handbook of Technical Gas-Analy- - sis... . . . 8vo, 400
Winslow, A. Stadia Surveying. (Science Series No. 77.). 16 mo , 050
Wisser, Lieut. J. P. Explosive Materials. (Science Series No. 050
-Modern Gun Cotton. (Science Series No. 89.)......16mo, - 50
Wood, De V. Luminiferous Aether. (Science Series No. 85.) 16 mo , 050
Woodbury, D. V. Elements of Stability in the Well-propor- tioned Arch 8vo, half mor., 400
Worden, E. C. The Nitrocellulose Industry. Two Volumes.
8vo (In Press.)
Wright, A. C. Analysis of Oils and Allied Substances *3 50
- Simple Method for Testing Painter's Materials *2 50
Wright, H. E. Handy Book for Brewers *5 00
Wright, F. W. Design of a Condensing Plant. * 150
Wright, T. W. Elements of Mechanics *2 50
Wright, T. W., and Hayford, J. F. Adjustment of Observations 8 vo , *3 00
Young, J. E. Electrical Testing for Telegraph Engineers. .. 8vo, *4 oo
Zahner, R. Transmission of Power. (Science Series No. 40.)
16 mo ,
Zeidler, J., and Lustgarten, J. Electric Arc Lamps 8vo,Zeuner, A. Technical Thermodynamics. Trans. by J. F.Klein. Two Volumes...........................8vo, *8 ooZimmer, G. F. Mechanical Handling of Material.........4to, *io ooZipser, J. Textile Raw Materials. Trans. by C. Salter......8vo, *5 ooZur Nedden, F. Engineering Workshop Machines and Proc-esses. Trans. by J. A. Davenport8vo, *2 oo

ELECTRICAL

ENGINEERS

POCKET BOOK

 1600 pp .1128 tI .718 Tables ameFoster's Pocketbook is the busy engineer's first assistant. When he wants really reliable information, he turns to Foster to get it for him, and he gets it. Foster places before him data on the latest and best practice in electrical engineering with a minimum expenditure of time and effort.

The material in Foster is logically arranged and is indexed in a full table of contents and a voluminous index that alone covers sixty pages, and to this is added a set of patent thumb index tabs that make reference to any section of the book practically instantaneous. The index is most thorough and reliable. It points right to the spot where the information sought is.

If you ever need information on electricity, you ought to have a copy of the new Fifth Edition, completely revised and enlarged, with four-fifths of the old matter replaced by new, up-to-date material, and containing all the excellent features named above, with 1,636 pages, r. 128 illustrations and 718 tables. The price is $\$ 5.00$. Order a copy now

CIVIL ENGINEERS' Ready POCKETBOOK
 By ALBERT I. FRYE, M. Am. Soc. C. E.

ACOMPREHENSIVE treatment of Civil Engineering, in seventy sections, comprising about 1,400 pages; with 500 tables and 1,000 illustrations. Also a complete glossary of engineering terms.
Each main subject receives economic consideration and analysis, and is reinforced with excerpts from, and references to the most important cost and other data in our leading technical publications-including hundreds of illustrations of up-to-date engineering structures and details.
"How to design engineering structures economically" has received careful study in the preparation of this work. The fundamental principles laid down can be followed readily by every young engineer, and carried to practical completion in the finished structure.

Most of the tables are new and have been prepared regardless of time and expense. Many of them have been arranged in a novel manner which will appeal especially to engineers; and all have been carefully checked and rechecked to eliminate the possibility of errors.

Graphical methods have been illustrated freely throughout the work, in connection with analytical solutions.

Method sand cost of work have received special attention; and, thus, there is crowded into the 1,400 pages of text, in small type and in pocketbook form, a vast amount of engineering data, formulas and tables, that will be found absolutely indispensable to every engineer, contractor and student.

D. Van Nostrand Company, Publishers 23 Murray and 27 Warren Sts., NEW YORK

RETURN TO the circulation desk of any
University of California Library or to the
NORTHERN REGIONAL LIBRARY FACILITY
Bldg. 400, Richmond Field Station
University of California
Richmond, CA 94804-4698
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS
2 -month loans may be renewed by calling
(510) 642-6753

1 -year loans may be recharged by bringing books to NRLF
Renewals and recharges may be made 4 days prior to due date

DUE AS STAMPED BELOW

OCT 61993
bilh YB 10848

[^0]: New York, October I, igir.

[^1]: * Bridge trusses are built either as deck or through spans. In the former, the roadway rests on the upper chord; in the latter, on the lower chord.

[^2]: 1 "Graphical Statics of Mechanism," Hermann-Smith, New York, 1904, p. 88.

